分析 (1)設(shè)等比數(shù)列{an}的公比為q,由a1=1,a4=27;可得1×q3=27,解得q.設(shè)等差數(shù)列{bn} 的公差為d,由b1=3,S5=35.可得5×3+$\frac{5×4}{2}d$=35,解得d.
(2)cn=anbn=(2n+1)•3n-1.利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,∵a1=1,a4=27;∴1×q3=27,解得q=3.
∴${a}_{n}={3}^{n-1}$.
設(shè)等差數(shù)列{bn} 的公差為d,∵b1=3,S5=35.∴5×3+$\frac{5×4}{2}d$=35,解得d=2.
∴bn=3+2(n-1)=2n+1.
(2)cn=anbn=(2n+1)•3n-1.
∴數(shù)列{cn} 的前n 項和Tn=3+5×3+7×32+…+(2n+1)•3n-1.
3Tn=3×3+5×32+…+(2n-1)•3n-1+(2n+1)•3n.
∴-2Tn=3+2×(3+32+…+3n-1)-(2n+1)•3n=3+$2×\frac{3({3}^{n-1}-1)}{3-1}$-(2n+1)•3n.
∴Tn=n•3n.
點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>0,x2+x≤0 | B. | ?x≤0,x2+x>0 | C. | ?x0>0,x02+x0≤0 | D. | ?x0≤0,x02+x0>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1” | |
B. | 命題“若α>β,則sinα>sinβ”的逆否命題為真命題 | |
C. | 命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0” | |
D. | “x>1”是“x2+x-2>0”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com