分析 (Ⅰ)推導(dǎo)出MN∥BC∥AD,由此能證明MN∥平面PAD.
(Ⅱ)過點(diǎn)P作PO垂直于AB,交AB于點(diǎn)O,建立空間直角坐標(biāo)系,利用向量法能求出二面角B-AM-C的大。
(Ⅲ)設(shè)E(1,λ,0),則$\overrightarrow{EN}=(-\frac{1}{2},\frac{1}{2}-λ,\frac{{\sqrt{3}}}{2})$,由此利用向量法能求出在BC存在點(diǎn)E,使得EN⊥平面AMN,此時(shí)$\frac{BE}{BC}=\frac{1}{2}$.
解答 (本小題滿分14分)
證明:(Ⅰ)∵M(jìn),N分別是PB,PC中點(diǎn)
∴MN是△ABC的中位線
∴MN∥BC∥AD
又∵AD?平面PAD,MN?平面PAD
所以MN∥平面PAD.….(4分)
解:(Ⅱ)過點(diǎn)P作PO垂直于AB,交AB于點(diǎn)O,
因?yàn)槠矫鍼AB⊥平面ABCD,所以PO⊥平面ABCD,
如圖建立空間直角坐標(biāo)系,
設(shè)AB=2,則A(-1,0,0),C(1,1,0),
M($\frac{1}{2}$,0,$\frac{{\sqrt{3}}}{2}$),
B(1,0,0),N($\frac{1}{2}$,$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),
則$\overrightarrow{AC}=(2,1,0)$,$\overrightarrow{AM}=(\frac{3}{2},0,\frac{{\sqrt{3}}}{2})$
設(shè)平面CAM法向量為$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
由$\left\{{\begin{array}{l}{\overrightarrow{n_1}•\overrightarrow{AC}=0}\\{\overrightarrow{n_1}•\overrightarrow{AM}=0}\end{array}}\right.$,得$\left\{{\begin{array}{l}{2{x_1}+{y_1}=0}\\{\frac{3}{2}{x_1}+\frac{{\sqrt{3}}}{2}{z_1}=0}\end{array}}\right.$,
令x1=1,則${y_1}=-2,{z_1}=-\sqrt{3}$,即$\overrightarrow{n_1}=(1,-2,-\sqrt{3})$
平面ABM法向量$\overrightarrow{n_2}=(0,1,0)$
所以,二面角B-AM-C的余弦值$|{cosθ}|=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_2}}|}}=\frac{{\sqrt{2}}}{2}$
因?yàn)槎娼荁-AM-C是銳二面角,
所以二面角B-AM-C等于45°….(10分)
(Ⅲ)存在點(diǎn)E,使得EN⊥平面AMN….(11分)
設(shè)E(1,λ,0),則$\overrightarrow{EN}=(-\frac{1}{2},\frac{1}{2}-λ,\frac{{\sqrt{3}}}{2})$,
由$\left\{{\begin{array}{l}{\overrightarrow{EN}•\overrightarrow{AM}=0}\\{\overrightarrow{EN}•\overrightarrow{MN}=0}\end{array}}\right.$可得$λ=\frac{1}{2}$,
所以在BC存在點(diǎn)E,使得EN⊥平面AMN,
此時(shí)$\frac{BE}{BC}=\frac{1}{2}$.….(14分)
點(diǎn)評 本題考查線面平行的證明,考查二面角的求法,考查滿足條件的點(diǎn)是否存在的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$ | B. | -$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$ | C. | $\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$ | D. | -$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{1}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e1=e2<e3 | B. | e1<e2=e3 | C. | e1=e2>e3 | D. | e2=e3<e1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com