精英家教網 > 高中數學 > 題目詳情

已知實數x,y滿足x2+y2=1,則數學公式的最小值為________.


分析:明確方程及的幾何意義,利用直線與圓相切,可得結論.
解答:x2+y2=1表示以原點為圓心,1為半徑的圓,表示圓上的點與(-1,-2)連線的斜率
的最小值,即圓上的點與(-1,-2)連線的斜率的最小值
當直線與圓相切時,切線斜率的值為最大或最。
斜率存在時,設切線方程為y+2=k(x+1),即kx-y+k-2=0
圓心到直線的距離d=,∴,∴k=
的最小值為
故答案為:
點評:本題考查斜率的幾何意義,考查直線與圓的位置關系,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知實數x,y滿足
x2
a2
-
y2
b2
=1(a>0,b>0)
,則下列不等式中恒成立的是( 。
A、|y|<
b
a
x
B、y>-
b
2a
|x|
C、|y|>-
b
a
x
D、y<
2b
a
|x|

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x,y滿足
x-y+2≥0
x+y≥0
x≤1.
則z=2x+4y的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x、y滿足
x+2y-2≥0
x≤2
y≤1
z=
|3x+4y-2|
5
的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x,y滿足
x≥0
y≥0
x+y≤s
y+2x≤4
,當2≤s≤3時,目標函數z=3x+2y的最大值函數f(s)的最小值為
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•湛江一模)已知實數x,y滿足
x≥1
y≤2
x-y≤0
,則x2+y2的最小值是( 。

查看答案和解析>>

同步練習冊答案