直線kx-y+6=0被圓x2+y2=25截得的弦長為8,則k的值為
 
考點:直線與圓的位置關系
專題:直線與圓
分析:利用垂徑定理及勾股定理即可求出弦長,利用點到直線的距離公式求出圓心到直線的距離d,從而可得結(jié)論.
解答: 解:∵直線kx-y+6=0被圓x2+y2=25截得的弦長為8,
∴弦心距為
52-42
=3.
|k•0-0+6|
1+k2
=3,
解得k=±
3

故答案為:±
3
點評:此題考查了直線與圓相交的性質(zhì),涉及的知識有:圓的標準方程,點到直線的距離公式,垂徑定理及勾股定理,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓心為M的動圓M過點(1,0),且與直線x=-1相切,則圓心M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},新數(shù)列a1,a2-a1,a3-a2,…,an-an-1,…為首項為1,公比為
1
3
的等比數(shù)列,則an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(-2,x),若(2
a
+
b
)∥(
a
-2
b
),則實數(shù)x的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項和,若a1,a3是方程x2-10x+9=0的兩個根,則d=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(x+1)•ex在區(qū)間(-∞,a)上為減函數(shù),則實數(shù)a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
1-3i
1+i
的虛部是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項都是正數(shù),且對任意n∈N*都有a13+a23+a33+…+an3=Sn2+2Sn,其中Sn為數(shù){an}的前n項和,則an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列四個命題:
①“若實數(shù)x,y滿足x2+y2≠0,則實數(shù)x,y不全為零”的否命題,
②“若a>b,則a2>b2”的否定;
③“若m>0,則x2+x-m=0有實根”的逆否命題,
④“對頂角相等”的逆命題;
其中真命題的個數(shù)為
 

查看答案和解析>>

同步練習冊答案