【題目】某工廠為檢驗車間一生產(chǎn)線工作是否正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測量它們的尺寸(單位:)并繪成頻率分布直方圖,如圖所示.根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件尺寸服從正態(tài)分布,其中近似為零件樣本平均數(shù)近似為零件樣本方差.

(1)求這批零件樣本的的值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)假設(shè)生產(chǎn)狀態(tài)正常,求;

(3)若從生產(chǎn)線中任取一零件,測量其尺寸為,根據(jù)原則判斷該生產(chǎn)線是否正常?

附:;若,則, ,.

【答案】(1)75,110;(2)0.8185;(3)該生產(chǎn)線工作不正常.

【解析】分析:(1)取每組區(qū)間的中點,對應(yīng)的頻率為,根據(jù)公式,,計算樣本的的值.

(2)由正態(tài)分布曲線的性質(zhì),分別計算,就可求出的值.

(3)由題可知,零件尺寸服從正態(tài)分布時認(rèn)為這條生產(chǎn)線工作正常,根據(jù),,生產(chǎn)線工作不正常.

詳解:解:(1) .

(2)由(1)知,.

從而 ,

.

(3),.

,小概率事件發(fā)生了,∴該生產(chǎn)線工作不正常.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三次函數(shù)過點,且函數(shù)在點處的切線恰好是直線.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ) 設(shè)函數(shù),若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的非負(fù)半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)將C1的方程化為直角坐標(biāo)方程;
(2)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校研究性學(xué)習(xí)小組從汽車市場上隨機(jī)抽取輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計結(jié)果分成,,繪制成如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)求續(xù)駛里程在的車輛數(shù)

(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過點的直線與圓交于不同的兩點,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化學(xué)、生物4門中選擇2門.“2”中記入高考總分的單科成績是由原始分轉(zhuǎn)化得到的等級分,學(xué)科高考原始分在全省的排名越靠前,等級分越高小明同學(xué)是2018級的高一學(xué)生.已確定了必選地理且不選政治,為確定另選一科,小明收集并整理了化學(xué)與生物近10大聯(lián)考的成績百分比排名數(shù)據(jù)x(如x=19的含義是指在該次考試中,成績高于小明的考生占參加該次考試的考生數(shù)的19%)繪制莖葉圖如下.

(1)分別計算化學(xué)、生物兩個學(xué)科10次聯(lián)考的百分比排名的平均數(shù);中位數(shù);

(2)根據(jù)已學(xué)的統(tǒng)計知識,并結(jié)合上面的數(shù)據(jù),幫助小明作出選擇.并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國古代數(shù)學(xué)名著《九章算術(shù)》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維中,底面.

(1)從三棱錐中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;

(2)如圖,已知垂足為,垂足為.

(i)證明:平面⊥平面;

(ii)作出平面與平面的交線,并證明是二面角的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年電子商務(wù)蓬勃發(fā)展,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.70,對快遞的滿意率為0.60,商品和快遞都滿意的交易為80

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有99%認(rèn)為網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?

對快遞滿意

對快遞不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

(Ⅱ)若將頻率視為概率,某人在該網(wǎng)購平臺上進(jìn)行的3次購物中,設(shè)對商品和快遞都滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

附:,

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機(jī))對所消費的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機(jī)支付儼然成為新寵.某金融機(jī)構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

同步練習(xí)冊答案