如下圖,正方形SG1G2G3中,E、F分別是G1G2、G2G3的中點(diǎn),D是EF的中點(diǎn),現(xiàn)在沿SE、SF及EF把這個(gè)正方形折成一個(gè)四面體,使G1、G2、G3三點(diǎn)重合,重合后的點(diǎn)記為G,則在四面體S-EFG中必有
A.SG⊥△EFG所在平面
B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面
D.GD⊥△SEF所在平面
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
如下圖,正方形ABCD、ABEF的邊長(zhǎng)都是1,而且平面ABCD、ABEF互相垂直,點(diǎn)M在AC上移動(dòng),點(diǎn)N在BF上移動(dòng),若CM=BN=a(0<a<).
(Ⅰ)求MN的長(zhǎng);
。á颍┊(dāng)a為何值時(shí),MN的長(zhǎng)最小;
(Ⅲ)當(dāng)MN長(zhǎng)最小時(shí),求面MNA與面MNB所成的二面角a 的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(Ⅰ)求MN的長(zhǎng);
(Ⅱ)當(dāng)a為何值時(shí),MN的長(zhǎng)最小;
。á螅┊(dāng)MN長(zhǎng)最小時(shí),求面MNA與面MNB所成的二面角a 的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
(2006
黃岡)如下圖,正方形的邊長(zhǎng)為4,D是的中點(diǎn),E是上的點(diǎn),將△及△分別沿DC和EC折起,使、重合于A,且二面角A-DC-E為直二面角.(1)
求證:CD⊥DE;(2)
求AE與面DEC所成角的正弦值;(3)
求點(diǎn)D到平面AEC的距離.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.AG⊥平面EFG B.AH⊥平面EFG
C.GF⊥平面AEF D.GH⊥平面AEF
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com