設(shè)函數(shù)在區(qū)間的導(dǎo)函數(shù)為在區(qū)間的導(dǎo)函數(shù)為若在區(qū)間上恒成立,則稱(chēng)函數(shù)在區(qū)間上為“凸函數(shù)”,已知,若對(duì)任意的實(shí)數(shù)m滿足時(shí),函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為( )
A.4 B.3 C.2 D.1
C
【解析】
試題分析:當(dāng)時(shí),恒成立等價(jià)于當(dāng)時(shí),恒成立.當(dāng)時(shí),顯然成立.
當(dāng)時(shí),,∵的最小值是-2,∴,從而解得;當(dāng)時(shí),,∵的最大值是2,∴,從而解得.綜上可得,從而的最大值為
考點(diǎn):本小題主要考查函數(shù)的導(dǎo)數(shù)與不等式恒成立問(wèn)題的解法,考查知識(shí)遷移與轉(zhuǎn)化能力.
點(diǎn)評(píng):解決此類(lèi)問(wèn)題關(guān)鍵是要理解題目所給信息(新定義),另外恒成立問(wèn)題一般要轉(zhuǎn)化為最值問(wèn)題解決,必要時(shí)要進(jìn)行分類(lèi)討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
12 |
1 |
3 |
3 |
2 |
A、4 | B、3 | C、2 | D、1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)在區(qū)間的導(dǎo)函數(shù),在區(qū)間的導(dǎo)函數(shù),若在區(qū)間上的恒成立,則稱(chēng)函數(shù)在區(qū)間上為“凸函數(shù)”,已知,若當(dāng)實(shí)數(shù)滿足時(shí),函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
.設(shè)函數(shù)在區(qū)間的導(dǎo)函數(shù),在區(qū)間的導(dǎo)函數(shù),若在區(qū)間上的恒成立,則稱(chēng)函數(shù)在區(qū)間上為“凸函數(shù)”,已知,若當(dāng)實(shí)數(shù)滿足時(shí),函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省梅州市高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)在上的導(dǎo)函數(shù)為,在上的導(dǎo)函數(shù)為,若在上,恒成立,則稱(chēng)函數(shù)在上為“凸函數(shù)”.已知.
(1)若為區(qū)間上的“凸函數(shù)”,試確定實(shí)數(shù)的值;
(2)若當(dāng)實(shí)數(shù)滿足時(shí),函數(shù)在上總為“凸函數(shù)”,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com