精英家教網 > 高中數學 > 題目詳情
設f(x)=x-2sinx,若f′(x0)=0且x0∈(0,π),則x0=
 
考點:導數的運算
專題:導數的概念及應用
分析:求函數的導數,解導數方程即可得到結論.
解答: 解:∵f(x)=x-2sinx,
∴f′(x)=1-2cosx,
由f′(x0)=1-2cosx0=0,
解得cosx0=
1
2
,
∵x0∈(0,π),
∴x0=
π
3
,
故答案為:
π
3
點評:本題主要考查導數的計算,要求熟練掌握函數的導數公式,比較基礎.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知具有線性相關的兩個變量x,y滿足:①樣本點的中心為(1,3);②回歸直線方程為y=2x+a.據此預測:x=15時,y的值約為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

某貨輪在航行中不幸遇險,發(fā)出呼救信號,我海軍護衛(wèi)艦在A處獲悉后,測得該貨輪在北偏東45°方向距離為10海里的C處,并測得貨輪正沿北偏東105°的方向、以每小時9海里的速度向附近的小島靠攏.我海軍護衛(wèi)艦立即以每小時21海里的速度前去營救;則護衛(wèi)艦靠近貨輪所需的時間是
 
小時.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個結論:
①“?x∈R,2x>0”的否定是“?x∈R,2x>0”;
②“?x∈N,(x-1)2>0”的否定是“?x∈N,(x-1)2≠0”;
③“?x∈R,lgx<1”的否定是“?x∈R,lgx≥1”;
④“?x∈R,tanx=2”的否定是“?x∈R,tanx>2或tanx<2”.
其中正確結論的序號是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

依次寫出數a1,a2,a3,…,其中a1=1,法則如下:如果an-2為自然數且未寫出過,則寫an+1=an-2,否則就寫an+1=an+3,那么a6=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設△ABC的內角A,B,C所對的邊分別為a,b,c,且C=
π
3
,a+b=λ
,若△ABC面積的最大值為9
3
,則λ的值為( 。
A、8B、12C、16D、21

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數g(x)=
f(x)
ex
是定義在R上的函數,其中g(x)的導函數為g′(x),滿足f′(x)<f(x)對于x∈R恒成立,則(  )
A、f(2)>e2g(0),f(2014>e2014g(0)
B、f(2)>e2g(0),f(2014)<e2014g(0)
C、f(2)<e2g(0),f(2014)<e2014g(0)
D、f(2)<e2g(0),g(2014)>e2014g(0)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,程序框圖(即算法流程圖)運算的結果是( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中,真命題是( 。
A、a+b=0的充要條件是
a
b
=-1
B、?x0∈R,x02≤0
C、?x∈R,2x>1
D、ab>0是a>0,b>0的充分條件

查看答案和解析>>

同步練習冊答案