A. | 是奇函數(shù),且在(-∞,+∞)上是減函數(shù) | B. | 是偶函數(shù),且在(-∞,+∞)上是減函數(shù) | ||
C. | 是偶函數(shù),且在(-∞,+∞)上是增函數(shù) | D. | 是奇函數(shù),且在(-∞,+∞)上是增函數(shù) |
分析 利用奇函數(shù)的定義,驗證f(-x)=-x+sinx=-f(x),利用導(dǎo)數(shù)非負(fù),確定函數(shù)f(x)=x-sinx(x∈R)在(-∞,+∞)上是增函數(shù).
解答 解:∵f(-x)=-x-sin(-x)=-x+sinx=-(x-sinx)=-f(x),
∴函數(shù)f(x)是奇函數(shù).
求導(dǎo)函數(shù)可得f′(x)=1-cosx.
∵-1≤cosx≤1,
∴f′(x)=1-cosx≥0.
∴函數(shù)f(x)=x-sinx(x∈R)在(-∞,+∞)上是增函數(shù).
故選:D.
點評 本題考查了函數(shù)奇偶性的判定,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$或$\frac{2π}{3}$ | B. | $\frac{π}{6}$或$\frac{5π}{6}$ | C. | $\frac{π}{4}$或$\frac{3π}{4}$ | D. | $\frac{π}{3}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z | B. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z | ||
C. | [kπ-$\frac{π}{12}$,kπ+$\frac{π}{12}$],k∈Z | D. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤0或x>4} | B. | {x|x<-1或x>4} | C. | R | D. | {x|-1≤x≤0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com