【題目】已知函數(shù)

I)求曲線在點處的切線方程.

II)求證:當時,

III)設實數(shù)使得恒成立,求的最大值.

【答案】I;(II見解析;III最大值為.

【解析】試題分析:(I,得,又,可得在處切線方程為

II)令,求導得出的增減性,然后由得證.

III)由(II)可知,當時, 恒成立. 時,令,求導,可得單調(diào)遞減,當時,F(xiàn), 即當時, ,對不恒成立,可得k的最大值為2.

試題解析:I,

,

,

,

∴在處切線方程為

II)證明:令,

,

,

,

,

即在時,

III)由(II)知,在時,

恒成立,

時,令,

,

,

∴當時, ,

此時在單調(diào)遞減,

時, ,

,

∴當時, ,

不恒成立,

最大值為

點晴:本題主要考查函數(shù)導數(shù)與不等式,恒成立問題.要證明一個不等式,我們可以先根據(jù)題意所給條件化簡這個不等式,如第二問的不等式,可以轉化為,第三問的不等式可以轉化為,劃歸與轉化之后,就可以假設相對應的函數(shù),然后利用導數(shù)研究這個函數(shù)的單調(diào)性、極值和最值,圖像與性質(zhì),進而求解得結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方形中,,,M為DC的中點.沿折起,使得平面平面.

1求證:;

2若點是線段上的一動點,問點在何位置時,二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為梯形,,,且

若點上一點且,證明:平面;

二面角的大。

在線段上是否存在一點,使得?若存在,求出的長;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中, 為線段上的動點,則下列判斷錯誤的是( )

A. 平面 B. 平面

C. D. 三棱錐的體積與點位置有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點 ,圓 ,過的動直線兩點,線段中點為, 為坐標原點。

1)求點的軌跡方程;

2)當時,求直線的方程以及面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱中, 底面, , ,且, .點在棱上,平面與棱相交于點

)求證: 平面

)求證: 平面

)求三棱錐的體積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù),記.

(1)求函數(shù)的定義域及其零點;

(2)若關于的方程在區(qū)間內(nèi)僅有一解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,設點是橢圓 上一點,從原點向圓 作兩條切線分別與橢圓交于點 ,直線 的斜率分別記為, . 

(1)求證: 為定值;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調(diào)性,并寫出詳細過程;

(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案