分析 利用數(shù)列遞推關(guān)系、等比數(shù)列的求和公式、極限運算性質(zhì)即可得出.
解答 解:∵${S_n}=1-\frac{2}{3}{a_n}$(n∈N*),∴n=1時,${a}_{1}=1-\frac{2}{3}{a}_{1}$,解得a1=$\frac{3}{5}$.
n≥2時,an=Sn-Sn-1=1-$\frac{2}{3}{a}_{n}$-$(1-\frac{2}{3}{a}_{n-1})$,化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{2}{5}$.
∴數(shù)列{an}是等比數(shù)列,首項為$\frac{3}{5}$,公比為$\frac{2}{5}$.
∴$\lim_{n→∞}{S_n}$=$\frac{{a}_{1}}{1-q}$=1.
故答案為:1.
點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的求和公式、極限運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{14+4\sqrt{2}}$ | B. | $\sqrt{22}$ | C. | $3\sqrt{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36種 | B. | 24種 | C. | 18種 | D. | 9種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一條射線 | B. | 兩條射線 | C. | 雙曲線的一支 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 8 | C. | 7 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com