已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1.
(1)求橢圓C1的方程;
(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(h∈R)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值.
(1)+x2=1 (2)1
【解析】
解:(1)由題意,得
從而
因此,所求的橢圓方程為+x2=1.
(2)設(shè)M(x1,y1),N(x2,y2),
P(t,t2+h),
則拋物線C2在點(diǎn)P處的切線斜率為
y′|x=t=2t,
直線MN的方程為:
y=2tx-t2+h.
將上式代入橢圓C1的方程中,
得4x2+(2tx-t2+h)2-4=0,
即4(1+t2)x2-4t(t2-h)x+(t2-h)2-4=0.①
因?yàn)橹本MN與橢圓C1有兩個(gè)不同的交點(diǎn),
所以①式中的
Δ1=16[-t4+2(h+2)t2-h2+4]>0.②
設(shè)線段MN的中點(diǎn)的橫坐標(biāo)是x3,
則x3==.
設(shè)線段PA的中點(diǎn)的橫坐標(biāo)是x4,
則x4=.
由題意,得x3=x4,
即t2+(1+h)t+1=0.③
由③式中的
Δ2=(1+h)2-4≥0,
得h≥1或h≤-3.
當(dāng)h≤-3時(shí),h+2<0,4-h2<0,
則不等式②不成立,
所以h≥1.
當(dāng)h=1時(shí),代入方程③得t=-1,
將h=1,t=-1代入不等式②,檢驗(yàn)成立.
所以h的最小值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.8 B.12 C.9 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.2 B.4 C.8 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題
已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則( )
(A)a2= (B)a2=13
(C)b2= (D)b2=2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com