(n0)________________(用根式表示)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•嘉定區(qū)二模)用Sm→n表示數(shù)列{an}從第m項(xiàng)到第n項(xiàng)(共n-m+1項(xiàng))之和.
(1)在遞增數(shù)列{an}中,an與an+1是關(guān)于x的方程x2-4nx+4n2-1=0(n為正整數(shù))的兩個(gè)根.求{an}的通項(xiàng)公式并證明{an}是等差數(shù)列;
(2)對(duì)(1)中的數(shù)列{an},判斷數(shù)列S1→3,S4→6,S7→9,…,S3k-2→3k的類型;
(3)對(duì)(1)中的數(shù)列作進(jìn)一步研究,提出與(2)類似的問題,你可以得到怎樣的結(jié)論,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•嘉定區(qū)二模)用Sm→n表示數(shù)列{an}從第m項(xiàng)到第n項(xiàng)(共n-m+1項(xiàng))之和.
(1)在遞增數(shù)列{an}中,an與an+1是關(guān)于x的方程x2-4nx+4n2-1=0(n為正整數(shù))的兩個(gè)根.求{an}的通項(xiàng)公式并證明{an}是等差數(shù)列;
(2)對(duì)(1)中的數(shù)列{an},判斷數(shù)列S1→3,S4→6,S7→9,…,S3k-2→3k的類型;
(3)對(duì)一般的首項(xiàng)為a1,公差為d的等差數(shù)列,提出與(2)類似的問題,你可以得到怎樣的結(jié)論,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•惠州模擬)用Sm→n表示數(shù)列{an}從第m項(xiàng)到第n項(xiàng)(共n-m+1項(xiàng))之和.
(1)在遞增數(shù)列{an}中,an與an+1是關(guān)于x的方程x2-4nx+4n2-1=0(n為正整數(shù))的兩個(gè)根.求{an}的通項(xiàng)公式并證明{an}是等差數(shù)列;
(2)對(duì)(1)中的數(shù)列{an},判斷數(shù)列S1→3,S4→6,S7→9,…,S3k-2→3k的類型,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)二模)對(duì)任意一個(gè)非零復(fù)數(shù)z,定義集合Az={ω|ω=zn,n∈N*},設(shè)a是方程x2+1=0的一個(gè)根,若在Aa中任取兩個(gè)不同的數(shù),則其和為零的概率為P=
1
3
1
3
(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下列命題用“且”聯(lián)結(jié)成“pq”形式的新命題.

(1)p:47是7的倍數(shù),q:49是7的倍數(shù);

(2)p:3是方程x2-9=0的根.q:-3是方程x2-9=0的根;

(3)p:4{1,2,3}.q:4∈N.

查看答案和解析>>

同步練習(xí)冊(cè)答案