【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線在x軸,y軸上的截距分別為,證明:為定值;
(3)若是橢圓上不同兩點(diǎn),軸,圓E過,且橢圓上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個(gè)內(nèi)切圓,試問:橢圓是否存在過焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)證明見解析;(3).
【解析】
(1)由焦點(diǎn)坐標(biāo)確定出c的值,根據(jù)橢圓的性質(zhì)列出a與b的方程,再將P點(diǎn)坐標(biāo)代入橢圓方程列出關(guān)于a與b的方程,聯(lián)立求出a與b的值,確定出橢圓方程即可.
(2)由題意:確定出C1的方程,設(shè)點(diǎn)P(x1,y1),M(x2,y2),N(x3,y3),根據(jù)M,N不在坐標(biāo)軸上,得到直線PM與直線OM斜率乘積為﹣1,確定出直線PM的方程,同理可得直線PN的方程,進(jìn)而確定出直線MN方程,求出直線MN與x軸,y軸截距m與n,即可確定出所求式子的值為定值.
(3)依題意可得符合要求的圓E,即為過點(diǎn)F,P1,P2的三角形的外接圓.所以圓心在x軸上.根據(jù)題意寫出圓E的方程.由于圓的存在必須要符合,橢圓上的點(diǎn)到圓E距離的最小值是|P1E|,結(jié)合圖形可得圓心E在線段P1P2上,半徑最。钟捎邳c(diǎn)F已知,即可求得結(jié)論.
(1)∵橢圓C:的右焦點(diǎn)為F(1,0),且點(diǎn)P(1,)在橢圓C上;
∴,解得a=2,b=,
∴橢圓C的標(biāo)準(zhǔn)方程為.
(2)由題意:C1:,
設(shè)點(diǎn)P(x1,y1),M(x2,y2),N(x3,y3),
∵M,N不在坐標(biāo)軸上,∴kPM=﹣=﹣,
∴直線PM的方程為y﹣y2=﹣(x﹣x2),
化簡(jiǎn)得:x2x+y2y=,①,
同理可得直線PN的方程為x3x+y3y=,②,
把P點(diǎn)的坐標(biāo)代入①、②得,
∴直線MN的方程為x1x+y1y=,
令y=0,得m=,令x=0得n=,
∴x1=,y1=,
又點(diǎn)P在橢圓C1上,
∴()2+3()2=4,
則=為定值.
(3)由橢圓的對(duì)稱性,可以設(shè)P1(m,n),P2(m,﹣n),點(diǎn)E在x軸上,設(shè)點(diǎn)E(t,0),
則圓E的方程為:(x﹣t)2+y2=(m﹣t)2+n2,
由內(nèi)切圓定義知道,橢圓上的點(diǎn)到點(diǎn)E距離的最小值是|P1E|,
設(shè)點(diǎn)M(x,y)是橢圓C上任意一點(diǎn),則|ME|2=(x﹣t)2+y2=,
當(dāng)x=m時(shí),|ME|2最小,∴m=﹣,③,
又圓E過點(diǎn)F,∴(﹣)2=(m﹣t)2+n2,④
點(diǎn)P1在橢圓上,∴,⑤
由③④⑤,解得:t=﹣或t=﹣,
又t=﹣時(shí),m=﹣<﹣2,不合題意,
綜上:橢圓C存在符合條件的內(nèi)切圓,點(diǎn)E的坐標(biāo)是(﹣,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長(zhǎng)度.已知曲線,過點(diǎn)的直線的參數(shù)方程為.直線與曲線分別交于、.
(1)求的取值范圍;
(2)若、、成等比數(shù)列,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項(xiàng)1,3,7,,()組成集合,從集合中任取()個(gè)數(shù),其所有可能的個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記.例如:當(dāng)時(shí),,,;時(shí),,,,.
(1)當(dāng)時(shí),求,,,的值;
(2)證明:時(shí)集合的與時(shí)集合的(為以示區(qū)別,用表示)有關(guān)系式(,);
(3)試求(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可吸入肺顆粒物.我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).
某試點(diǎn)城市環(huán)保局從該市市區(qū)2015年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉)
(1)求中位數(shù).
(2)從這15天的數(shù)據(jù)中任取兩天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列及數(shù)學(xué)期望.
(3)以這15天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按360天計(jì)算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),(萬(wàn)元),每件售價(jià)為0.05萬(wàn)元,通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合由滿足下列兩個(gè)條件的數(shù)列構(gòu)成:①②存在實(shí)數(shù)使得對(duì)任意正整數(shù)都成立.
(1)現(xiàn)在給出只有5項(xiàng)的有限數(shù)列試判斷數(shù)列是否為集合的元素;
(2)設(shè)數(shù)列的前項(xiàng)和為且若對(duì)任意正整數(shù)點(diǎn)均在直線上,證明:數(shù)列并寫出實(shí)數(shù)的取值范圍;
(3)設(shè)數(shù)列若數(shù)列沒有最大值,求證:數(shù)列一定是單調(diào)遞增數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線的右焦點(diǎn)分別為,短袖長(zhǎng)為,點(diǎn)在曲線上,直線上,且.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)試通過計(jì)算判斷直線與曲線公共點(diǎn)的個(gè)數(shù).
(3)若點(diǎn)在都在以線段為直徑的圓上,且,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的內(nèi)角,,的對(duì)邊分別為,,,已知 ,,.
(1)求角;
(2)若點(diǎn)滿足,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com