已知圓C的方程為有如下兩組論斷:

           第I組                                     第II組

   (a)點(diǎn)M在圓C內(nèi)且M不為圓心          (1)直線l與圓C相切

   (b)點(diǎn)M在圓C上                         (2)直線l與圓C相交

   (c)點(diǎn)M在圓C外                          (3)直線l與圓C相離

    把第I組論斷作為條件,第II組論斷作為結(jié)論,寫出所有可能成立的命題            .(將命題用序號(hào)寫成形如的形式)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
,(a>b>0)的兩焦點(diǎn)分別為F1、F2|F1F2|=4
2
,離心率e=
2
2
3
.過(guò)直線l:x=
a2
c
上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過(guò)圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為:x0x+y0y=r2”.由上述結(jié)論類比得到:“過(guò)橢圓
x2
a2
+
y2
b2
=1
(a>b>0),上一點(diǎn)P(x0,y0)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過(guò)定點(diǎn)(2
2
,0
);
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市順義區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過(guò)直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過(guò)圓x2+y2=r2上一點(diǎn)P(x,y)處的切線方程為:xx+yy=r2”.由上述結(jié)論類比得到:“過(guò)橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過(guò)定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市一模試卷及高頻考點(diǎn)透析:推理與證明 幾何證明選講(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過(guò)直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過(guò)圓x2+y2=r2上一點(diǎn)P(x,y)處的切線方程為:xx+yy=r2”.由上述結(jié)論類比得到:“過(guò)橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過(guò)定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案