【題目】上海市普通高中學業(yè)水平等級考成績共分為五等十一級,各等級換算成分數(shù)如表所示:
等級 | A | B | C | D | E | ||||||
分數(shù) | 70 | 67 | 64 | 61 | 58 | 55 | 52 | 49 | 46 | 43 | 40 |
上海某高中2018屆高三班選考物理學業(yè)水平等級考的學生中,有5人取得成績,其他人的成績至少是B級及以上,平均分是64分,這個班級選考物理學業(yè)水平等級考的人數(shù)至少為______人
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中有如下正確結(jié)論:為曲線(、為非零實數(shù),且不同時為負)上一點,則過點的切線方程為.
(1)已知為橢圓上一點,為過點的橢圓的切線,若直線與直線的斜率分別為與,求證:為定值;
(2)過橢圓上一點引橢圓的切線,與軸交于點.若為正三角形,求橢圓的方程;
(3)求與圓及(2)中的橢圓均相切的直線與坐標軸圍成的三角形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x,y的方程x2+y2﹣4x+4y+m=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)若m=4,過點P(0,2)的直線l與圓相切,求出直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓P恒過定點,且與直線相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,橢圓的離心率為是橢圓E的右焦點,直線AF的斜率為2,O為坐標原點.
(1)求E的方程;
(2)設過點且斜率為k的直線與橢圓E交于不同的兩M、N,且,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,四點中恰有三點在橢圓上.
(1)求橢圓C的方程
(2)橢圓C上是否存在不同的兩點M,N關于直線對稱?若存在,請求出直線MN的方程,若不存在,請說明理由.
(3)設直線l不經(jīng)過點且與C相交于A,B兩點,若直線與直線的斜率之和為1,求證直線l必過定點,并求出這個定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.
(1)求證:平面SBD⊥平面SAC;
(2)若SA與平面SCD所成角的正弦值為,求SB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com