從邊長為2a的正方形鐵片的四個角各截去一個邊長為x的正方形,再將四邊向上折起,做成一個無蓋長方體鐵盒,要求長方體的高度與底面邊長的比值不超過常數(shù)t(t>0).試問當x取何值時,容積V有最大值.

解:V=x(2a-2x)2=4(a-x)2·x.

≤t,

∴0<x≤,

∴函數(shù)V=V(x)=4x(a-x)2的定義域為(0,,

顯然<a,

∴V′=4(x-a)(3x-a),由V′>0,得0<x<或x>a,此時V(x)為增函數(shù);

由V′<0,得<x<a,此時V(x)為減函數(shù).

①當,即t≥時,在x=時,V有最大值a3;

②當,即0<t<時,在x=時,V有最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從邊長為2a的正方形鐵片的四個角各截去一個邊為x的正方形,再將四邊向上折起,做成一個無蓋的長方形鐵盒,要求長方體的高度與底面邊的比值不超過常數(shù)t(t>0).試問當x取何值時,容量V有最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t.問:
(1)求長方體的容積V關(guān)于x的函數(shù)表達式;
(2)x取何值時,長方體的容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:2011——2012學年湖北省洪湖二中高三八月份月考試卷理科數(shù)學 題型:解答題

(本題滿分12分)
從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t.
問:(1)求長方體的容積V關(guān)于x的函數(shù)表達式;(2)x取何值時,長方體的容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省宜昌市夷陵中學、荊門市鐘祥一中高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t.問:
(1)求長方體的容積V關(guān)于x的函數(shù)表達式;
(2)x取何值時,長方體的容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學理卷 題型:解答題

(12分)如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t,問:x取何值時,長方體的容積V有最大值?

 

查看答案和解析>>

同步練習冊答案