用數(shù)學(xué)歸納法證明:當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除,第二步的假設(shè)應(yīng)寫成假設(shè)n=
2k-1
2k-1
,k∈N*時命題正確,再證明n=
2k+1
2k+1
,k∈N*時命題正確.
分析:由于n為正奇數(shù),利用數(shù)學(xué)歸納法證明:當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除時,可知第二步的假設(shè)與目標(biāo).
解答:解:∵用數(shù)學(xué)歸納法證明:n為正奇數(shù)時,xn+yn能被x+y整除,
第一步,當(dāng)n=1時,x1+y1=x+y能被x+y整除;
第二步,假設(shè)n=2k-1時,k∈N*時命題正確,再證明n=2k+1,k∈N*時命題正確.
故答案為:2k-1;2k+1.
點(diǎn)評:本題考查數(shù)學(xué)歸納法的應(yīng)用,理解題意,把握“n為正奇數(shù)”是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-
1
n+3
)n
1
2
,求證(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求證:函數(shù)f(x)的圖象關(guān)于點(diǎn)A(1,
4
3
)
中心對稱,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)設(shè)g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求證:
(ⅰ)請用數(shù)學(xué)歸納法證明:當(dāng)n≥2時,1<an
3
2
;
(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
,用數(shù)學(xué)歸納法證明:當(dāng)n≥2,n∈N*時,n+f(1)+f(2)+…+f(n-1)=nf(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除,第二步的假設(shè)應(yīng)寫成
假設(shè)n=2k-1,k∈N*時命題正確,即當(dāng)n=2k-1,k∈N*時,x2k-1+y2k-1能被x+y整除
假設(shè)n=2k-1,k∈N*時命題正確,即當(dāng)n=2k-1,k∈N*時,x2k-1+y2k-1能被x+y整除

查看答案和解析>>

同步練習(xí)冊答案