分析 (Ⅰ)求出定義域和導(dǎo)數(shù)f′(x),令f′(x)>0,解出增區(qū)間,令f′(x)<0,解出減區(qū)間;
(Ⅱ)令H(x)=f(x)-g(x),利用導(dǎo)數(shù)判斷出H(x)的單調(diào)性和單調(diào)區(qū)間,得出H(x)的最大值,證明Hmax(x)<0即可.
解答 解:(Ⅰ)$f'(x)=\frac{2}{x+2}-2(x+1)=\frac{{-2({x^2}+3x+1)}}{x+2}(x>-2)$,
當(dāng)f′(x)>0 時(shí),所以 x2+3x+1<0,解得-2<x,
當(dāng)f′(x)<0時(shí),解得 $x>\frac{{-3+\sqrt{5}}}{2}$,
所以 f(x) 單調(diào)增區(qū)間為$(-2,\frac{{-3+\sqrt{5}}}{2})$,遞減區(qū)間是($\frac{-3+\sqrt{5}}{2}$,+∞);
(Ⅱ)當(dāng)k=2時(shí),g(x)=2(x+1).
令H(x)=f(x)-g(x)=2ln(x+2)-(x+1)2-2(x+1).
H′(x)=$\frac{-{2x}^{2}-8x-6}{x+2}$,
令H′(x)=0,即-2x2-8x-6=0,解得x=-1或x=-3(舍).
∴當(dāng)x>-1時(shí),H′(x)<0,H(x)在(-1,+∞)上單調(diào)遞減.
∴Hmax(x)=H(-1)=0,
∴對(duì)于?x>-1,H(x)<0,即f(x)<g(x).
(Ⅲ)由(II)知,當(dāng)k=2時(shí),f (x)<g (x)恒成立,
即對(duì)于“x>-1,2 ln (x+2)-(x+1)2<2 (x+1),不存在滿足條件的x0;
當(dāng)k>2時(shí),對(duì)于“x>-1,x+1>0,此時(shí)2 (x+1)<k (x+1).
∴2 ln (x+2)-(x+1)2<2 (x+1)<k (x+1),
即f (x)<g (x)恒成立,不存在滿足條件的x0;
令h(x)=f(x)-g(x)=2ln(x+2)-(x+1)2-k(x+1),
h′(x)=$\frac{-{2x}^{2}-(k+6)x-(2k+2)}{x+2}$,
當(dāng)k<2時(shí),令t (x)=-2x2-(k+6)x-(2k+2),
可知t (x)與h′(x)符號(hào)相同,
當(dāng)x∈(x0,+∞)時(shí),t (x)<0,h′(x)<0,h (x)單調(diào)遞減,
當(dāng)x∈(-1,x0)時(shí),h (x)>h (-1)=0,即f (x)-g (x)>0恒成立,
綜上,k的取值范圍為(-∞,2).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查分類討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{10}$ | B. | $\sqrt{10}$ | C. | $\frac{{\sqrt{10}}}{3}$ | D. | $\frac{{\sqrt{10}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com