(1)分別寫出x∈[0,1)時y=f(x)的解析式f1(x)和x∈[1,2)時y=f(x)的解析式f2(x);并猜想x∈[n,n+1],n≥-1,n∈Z時y=f(x)的解析式f n+1(x)(用x和n表示)(不必證明);
(2)當x=n+ (n≥-1,n∈Z)時,y=f n+1(x)x∈[n,n+1),(n≥-1,n∈Z)的圖象上有點列A n+1(x,f(x))和點列B n+1(n+1,f(n+1)),線段A n+1B n+2與線段B n+1A n+2的交點C n+1,求點C n+1的坐標(a n+1(x),b n+1(x));
(3)在前面(1)(2)的基礎(chǔ)上,請你提出一個點列C n+1(a n+1(x),b n+1(x))的問題,并進行研究,并寫下你研究的過程.
解:(1)x∈[0,1)時,x-1∈[-1,0),
∴f1(x)=f(x-1)+1=sinπ(x-1)+1=1-sinπx.
x∈[1,2)時,x-1∈[0,1),∴f2(x)=f(x-1)+1=1-sinπ(x-1)+1=2+sinπx.
x∈[n,n+1),n≥-1,n∈Z時,
∴f n+1(x)=f(x-1)+1=f(x-2)+2=n+1+(-1) n+1sinπx.
(2)當x=n+,A n+1(n+,n),B n+1(n+1,n+2),,=1,
=4,=4.
C n+1是平行四邊形A n+1A n+2B n+2B n+1的對角線的交點,C n+1(n+,n+).
(3)第一類,例如:在(2)的條件下,點C n+1與C n+2之間具有怎樣的數(shù)量關(guān)系.
解答:C n+1C n+2=2,
第二類,例如:在(2)的條件下,在C n+1與C n+2之間具有怎樣的位置關(guān)系
解答:C n+1與C n+2在直線y=x+上.
第三類,例如:把(2)的條件x=n+改成x∈[n,n+1)時,點C n+1an+1(x),bn+1(x))的運動曲線是什么?
解答:
即yc=只需寫出一個區(qū)間段上即可.
科目:高中數(shù)學 來源: 題型:
1 |
2 |
1 |
2011 |
2 |
2011 |
3 |
2011 |
4 |
2011 |
2010 |
2011 |
A、1005 | B、2010 |
C、2011 | D、4020 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
lnx |
x |
1 |
e |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
lnx |
x |
1 |
e |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1-x | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com