解:(Ⅰ)設(shè)橢圓方程為(a>b>0),
由已知c =1,又2a=,
則a=,b2=a2-c2=1,
橢圓C的方程是+x2=1;
(Ⅱ)若直線l與x軸重合,則以AB為直徑的圓是x2+y2=1,
若直線l垂直于x軸,則以AB為直徑的圓是,
由解得
即兩圓相切于點(diǎn)(1,0),
因此所求的點(diǎn)T如果存在,只能是(1,0),
事實(shí)上,點(diǎn)T(1,0)就是所求的點(diǎn),證明如下:
當(dāng)直線l垂直于x軸時,以AB為直徑的圓過點(diǎn)T(1,0),
若直線l不垂直于x軸,可設(shè)直線l:y=k(x+),
由
即,
記點(diǎn)A(x1,y1),B(x2,y2),
則
又因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20120424/20120424162459722946.gif">=(x1,1,y1),=(x2,1,y2),
=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+)
=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1
=(k2+1)+(k2-1)++1=0,
則TA⊥TB,故以AB為直徑的圓恒過點(diǎn)T(1,0),所以在坐標(biāo)平面上存在一個定點(diǎn)T(1,0)滿足條件。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
以F1(0,-1),F2(0,1)為焦點(diǎn)的橢圓C過點(diǎn)P(,1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)S(,0)的動直線l交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個定點(diǎn)T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點(diǎn)T ? 若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年吉林省長春十一中高三(上)期初數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測試卷12(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com