學(xué)校組織4名同學(xué)甲、乙、丙、丁去3個(gè)工廠A、B、C進(jìn)行社會(huì)實(shí)踐活動(dòng),每個(gè)同學(xué)只能去一個(gè)工廠.
(1)問有多少種不同分配方案?
(2)若每個(gè)工廠都有同學(xué)去,問有多少種不同分配方案?
(3)若同學(xué)甲、乙不能去工廠A,且每個(gè)工廠都有同學(xué)去,問有多少種不同分配方案?(結(jié)果全部用數(shù)字作答)
【答案】分析:(1)每一個(gè)同學(xué)都有3個(gè)選擇,故4個(gè)同學(xué)的分配方案共有 34=81種.
(2)先把4個(gè)同學(xué)分成3組,有=6種方法,再把這3組同學(xué)進(jìn)行全排列,共有=6種,根據(jù)分步計(jì)數(shù)原理求得結(jié)果.
(3)若A工廠只有丙、丁中的一個(gè)人,方法有2×=6種.若A工廠有丙、丁2個(gè)人,方法有2種.再把這兩個(gè)值相加,即得所求.
解答:解:(1)每一個(gè)同學(xué)都有3個(gè)選擇,故4個(gè)同學(xué)的分配方案共有 34=81種.
(2)先把4個(gè)同學(xué)分成3組,有=6種方法,再把這3組同學(xué)進(jìn)行全排列,共有=6種,
根據(jù)分步計(jì)數(shù)原理,不同的分配方案共有6×6=36種.
(3)若A工廠只有丙、丁中的一個(gè)人,方法有2種;再把丙、丁中的一個(gè)人和甲、乙分成2組,分別進(jìn)入B、C兩個(gè)工廠,方法有=6種.
根據(jù)分步計(jì)數(shù)原理,此時(shí)的分配方案共有 2×6=12種.
若A工廠有丙、丁2個(gè)人,則甲乙二人分別進(jìn)入B、C兩個(gè)工廠,方法有 2種.
綜上可得,不同的分配方案有12+2=14.
點(diǎn)評(píng):本題主要考查排列與組合及兩個(gè)基本原理,排列數(shù)公式、組合數(shù)公式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校組織4名同學(xué)甲、乙、丙、丁去3個(gè)工廠A、B、C進(jìn)行社會(huì)實(shí)踐活動(dòng),每個(gè)同學(xué)只能去一個(gè)工廠.
(1)問有多少種不同分配方案?
(2)若每個(gè)工廠都有同學(xué)去,問有多少種不同分配方案?
(3)若同學(xué)甲、乙不能去工廠A,且每個(gè)工廠都有同學(xué)去,問有多少種不同分配方案?(結(jié)果全部用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校組織乒乓球比賽,甲班有5名男同學(xué),3名女同學(xué)報(bào)名;乙班有6名男同學(xué),2名女同學(xué)報(bào)名.若從甲、乙兩班中各選出2名同學(xué),則選出的4人中恰有1名女同學(xué)的不同選法共有
345
345
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•海珠區(qū)一模)從4名男生甲、乙、丙、丁,三名女生A、B、C中抽出3名同學(xué)參加學(xué)校組織的數(shù)學(xué)竟賽,要求男,女生都有同學(xué)參加,問:(1)男生甲參加比賽有多少種情況;(2)男生甲參加比賽的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

從4名男生甲、乙、丙、丁,三名女生A、B、C中抽出3名同學(xué)參加學(xué)校組織的數(shù)學(xué)竟賽,要求男,女生都有同學(xué)參加,問:(1)男生甲參加比賽有多少種情況;(2)男生甲參加比賽的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案