已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若不等式Sn>kan-2對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是等差數(shù)列,a2=6,a5=12,數(shù)列{bn}的前n項(xiàng)和是Sn,且Sn+bn=1.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求證:數(shù)列{bn}是等比數(shù)列.
(3)記cn=,{cn}的前n項(xiàng)和為Tn,若Tn<對(duì)一切n∈N*都成立,求最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
大學(xué)生自主創(chuàng)業(yè)已成為當(dāng)代潮流.某大學(xué)大三學(xué)生夏某今年一月初向銀行貸款兩萬元作開店資金,全部用作批發(fā)某種商品.銀行貸款的年利率為6%,約定一年后一次還清貸款.已知夏某每月月底獲得的利潤(rùn)是該月月初投人資金的15%,每月月底需要交納個(gè)人所得稅為該月所獲利潤(rùn)的20%,當(dāng)月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經(jīng)營(yíng),如此繼續(xù),假定每月月底該商品能全部賣出.
(1)設(shè)夏某第n個(gè)月月底余元,第n+l個(gè)月月底余元,寫出a1的值并建立與的遞推關(guān)系;
(2)預(yù)計(jì)年底夏某還清銀行貸款后的純收入.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com