給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
(1)
; (2)
垂直.
試題分析:(1)由“橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
”知:
從而可得橢圓的標準方程和“準圓”的方程;
(2)分兩種情況討論:①
當中有一條直線斜率不存在;②直線
斜率都存在.
對于①可直接求出直線
的方程并判斷其是不互相垂直;
對于②設經過準圓上點
與橢圓只有一個公共點的直線為
與橢圓方程聯(lián)立組成方程組
消去
得到關于
的方程:
由
化簡整理得:
而直線
的斜率正是方程的兩個根
,從而
試題解析:(1)
橢圓方程為
準圓方程為
(2)①
當中有一條無斜率時,不妨設
無斜率,
因為
與橢圓只有一個共公點,則其方程為
當
方程為
時,此時
與準圓交于點
此時經過點
(或
)且與橢圓只有一個公共瞇的直線是
(或
)
即
為
(或
),顯然直線
垂直;
同理可證
方程為
時,直線
也垂直.
②當
都有斜率時,設點
其中
設經過點
與橢圓只有一個公共點的直線為
則由
消去
,得
由
化簡整理得:
因為
,所以有
設
的斜率分別為
,因為
與橢圓只有一個公共點
所以
滿足上述方程
所以
,即
垂直,
綜合①②知,
垂直.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
(
)的右焦點為
,且橢圓
過點
.
(1)求橢圓
的方程;
(2)設斜率為
的直線
與橢圓
交于不同兩點
、
,以線段
為底邊作等腰三角形
,其中頂點
的坐標為
,求△
的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的焦點坐標為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
過點
作傾斜角為
的直線
與曲線C
交于不同的兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(2013•浙江)如圖,點P(0,﹣1)是橢圓C
1:
+
=1(a>b>0)的一個頂點,C
1的長軸是圓C
2:x
2+y
2=4的直徑,l
1,l
2是過點P且互相垂直的兩條直線,其中l(wèi)
1交圓C
2于A、B兩點,l
2交橢圓C
1于另一點D.
(1)求橢圓C
1的方程;
(2)求△ABD面積的最大值時直線l
1的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓C
1:
=1(a>b>0)的左、右焦點分別為為
,
恰是拋物線C
2:
的焦點,點M為C
1與C
2在第一象限的交點,且|MF
2|=
.
(1)求C
1的方程;
(2)平面上的點N滿足
,直線l∥MN,且與C
1交于A,B兩點,若
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
上的點到直線
的最大距離是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知圓E
,點
,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡
的方程;
(2)點
,
,點G是軌跡
上的一個動點,直線AG與直線
相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的右焦點為
,橢圓
與
軸正半軸交于
點,與
軸正半軸交于
,且
,則橢圓
的方程為( )
查看答案和解析>>