分析 由題意:f(x)是一次函數(shù),設(shè)出f(x)的解析式,f[f(x)]=4x-1,利用待定系數(shù)法求解.
解答 解:由題意:f(x)是一次函數(shù),設(shè)f(x)=kx+b(k≠0),
∵f[f(x)]=4x-1,即:k(kx+b)+b=4x-1,
可得:$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=-1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-2}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{k=2}\\{b=-\frac{1}{3}}\end{array}\right.$.
∵一次函數(shù),是R上的增函數(shù),
∴k=2,b=-$\frac{1}{3}$.
所以函數(shù)f(x)的解析式為f(x)=2x-$\frac{1}{3}$.
故答案為:2x-$\frac{1}{3}$.
點(diǎn)評(píng) 本題主要考查了解析式的求法,利用了待定系數(shù)法求解.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}>\frac{1}$ | B. | a2<b2 | C. | a2>b2 | D. | 2a<2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{5π}{4}$ | C. | $-\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | 2 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com