分析:(1)根據(jù)n≥2時,有a
n=S
n-S
n-1,求出a
n;
(2)由a
n+log
3n=log
3b
n,及對數(shù)的運算性質(zhì)求出b
n,用錯位相減法求出數(shù)列{b
n}的前n項和T
n ;
(3)確定lnc
n=
,構(gòu)造f(x)=
,確定函數(shù)的單調(diào)性,即可得到結(jié)論.
解答:解:(1)∵S
n=n
2-n,∴當(dāng)n=1時,有a
1=S
1=0
當(dāng)n≥2時,有a
n=S
n-S
n-1=(n
2-n)-((n-1)
2-(n-1))=2n-2
當(dāng)n=1時也滿足.
∴數(shù)列 {a
n}的通項公式為a
n=2n-2(n∈N
*)
(2)由a
n+log
3n=log
3b
n,得:b
n=n•3
2n-2(n∈N
*)
∴數(shù)列{b
n}的前n項和T
n =1×3
0+2×3
2+3×3
4+…+n3
2(n-1),
故9T
n =1×3
2+2×3
4+3×3
6+…+(n-1)3
2(n-1)+n•3
2n,
相減可得-8T
n =1+3
2+3
4+…+3
2(n-1)-n•3
2n=
-n•3
2n,
∴T
n=
;
(3)由c
nn+1=
可得:c
nn+1=n+1,∴l(xiāng)nc
n=
令f(x)=
,則f'(x)=
,
∴n≥2(n∈N
*)時,{lnc
n}是遞減數(shù)列,
又lnc
1<lnc
2,
∴數(shù)列{c
n}中的最大值為c
2=
3.
點評:本題考查數(shù)列的通項,考查數(shù)列的求和,考查學(xué)生分析解決問題的能力,屬于中檔題.