已知橢圓的中心為原點,離心率,其一個焦點在拋物線的準線上,若拋物線與直線相切.

1)求該橢圓的標準方程;

2)當點在橢圓上運動時,設動點的運動軌跡為.若點滿足:,其中上的點,直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.

 

【答案】

1

2存在兩個定點,且為橢圓的兩個焦點,使得為定值,其坐標為

【解析】

試題分析:1根據(jù)拋物線與直線相切,聯(lián)立方程組并化簡, 利用,求得的值,進一步可得;

應用離心率求,得解.

2)設,,利用“代入法”求得的軌跡方程為:.

確定的坐標關系,

導出,作出判斷.

試題解析:

1,

拋物線與直線相切,

2

拋物線的方程為:,其準線方程為:

離心率, ,

故橢圓的標準方程為 5

2)設,,

當點在橢圓上運動時,動點的運動軌跡

的軌跡方程為: 7

分別為直線,的斜率,由題設條件知

因此 9

因為點在橢圓上,

所以,

所以,從而可知:點是橢圓上的點,

存在兩個定點,且為橢圓的兩個焦點,使得為定值,其坐標為13

考點:橢圓的幾何性質,直線與圓錐曲線的位置關系,平面向量的線性運算.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•道里區(qū)二模)已知橢圓的中心為原點,離心率e=
3
2
,且它的一個焦點與拋物線x2=-4
3
y
的焦點重合,則此橢圓方程為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為原點O,一個焦點為F(
3
,0)
,離心率為
3
2
.以原點為圓心的圓O與直線y=x+4
2
互相切,過原點的直線l與橢圓交于A,B兩點,與圓O交于C,D兩點.
(1)求橢圓和圓O的方程;
(2)線段CD恰好被橢圓三等分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為原點,離心率e=
3
2
,且它的一個焦點與拋物線x2=-4
3
y
的焦點重合,則此橢圓方程為
x2+
y2
4
=1
x2+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(重慶卷解析版) 題型:解答題

已知橢圓的中心為原點,長軸在 軸上,上頂點為 ,左、右焦點分別為 ,線段  的中點分別為 ,且△是面積為4的直角三角形。(Ⅰ)求該橢圓的離心率和標準方程;

(Ⅱ)過 作直線交橢圓于,,求直線的方程

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(重慶卷解析版) 題型:解答題

已知橢圓的中心為原點,長軸在 軸上,上頂點為 ,左、右焦點分別為 ,線段  的中點分別為 ,且△是面積為4的直角三角形。(Ⅰ)求該橢圓的離心率和標準方程;(Ⅱ)過 作直線交橢圓于,,求△的面積

 

查看答案和解析>>

同步練習冊答案