設直線與拋物線交于兩點.
(1)求線段的長;(2)若拋物線的焦點為,求的值.
科目:高中數(shù)學 來源: 題型:
2 |
3 |
8 |
3 |
1 |
4 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(09年長沙一中第八次月考理)(13分)已知直線L:x-y-3=0,拋物線C的頂點在原點,焦點在軸正半軸上,S是拋物線C上任意一點,T是直線L上任意一點,若|ST|的最小值為d>0時,點S的橫坐標為2.
(1)求拋物線方程以及d的值;
(2)過拋物線C的對稱軸上任一點作直線與拋物線交于兩點,點是點關于原點的對稱點.設點分有向線段所成的比為,
證明:;
(3)設R為拋物線準線上任意一點,過R作拋物線的兩條切線,切點分別為M,N,直線MN是否恒過一定點?若恒過定點,請指出定點;若不恒過定點,請說明理由。查看答案和解析>>
科目:高中數(shù)學 來源:2014屆浙江效實中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題
已知拋物線,為拋物線的焦點,橢圓;
(1)若是與在第一象限的交點,且,求實數(shù)的值;
(2)設直線與拋物線交于兩個不同的點,與橢圓交于兩個
不同點,中點為,中點為,若在以為直徑的圓上,且,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東汕頭金山中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)設橢圓與拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標記錄于下表中:
1)求,的標準方程, 并分別求出它們的離心率;
2)設直線與橢圓交于不同的兩點,且(其中坐標原點),請問是否存在這樣的直線過拋物線的焦點若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆黑龍江省下學期高二期末考試數(shù)學試題(文科) 題型:解答題
設拋物線的焦點為F,準線為,過點F作一直線與拋物線交于A、B兩點,再分別過點A、B作拋物線的切線,這兩條切線的交點記為P.
(1)證明:直線PA與PB相互垂直,且點P在準線上;
(2)是否存在常數(shù),使等式恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com