(本題滿分12分)設(shè)、分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

 

【答案】

解:(1)易知    所以,設(shè),則 

                           -------------- 3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052518133126569019/SYS201205251815074218767880_DA.files/image006.png">,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值   ,

當(dāng),即點(diǎn)為橢圓長(zhǎng)軸端點(diǎn)時(shí),有最大值. -------------- 5分

(2)顯然直線不滿足題設(shè)條件,可設(shè)直線,將代入,消去,整理得:

,                   -------------- 7分

 由

得:,                             -------------- 8分

 

,即  ∴        -------------- 11分

故由①、②得              -------------- 12分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆吉林省吉林市高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)命題:實(shí)數(shù)滿足,  命題:實(shí)數(shù)滿足.

當(dāng)為真,求實(shí)數(shù)的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省石家莊市高三暑期第二次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省高三十一月份階段性考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分12分)設(shè)函數(shù),其中。

(Ⅰ)當(dāng)時(shí),求不等式的解集;

(Ⅱ)若不等式的解集為 ,求a的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分12分)

設(shè)向量 

(1)若垂直,求的值

(2)求的最大值;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年云南省高二上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

設(shè),分別是橢圓的左、右焦點(diǎn),過斜率為1的直線相交于、兩點(diǎn),且,成等差數(shù)列,

(Ⅰ)求的離心率;

(Ⅱ)設(shè)點(diǎn)滿足,求的方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案