如圖,沿等腰直角三角形ABC的中位線DE,將平面ADE折起(轉(zhuǎn)動(dòng)一定角度),得到四棱錐A-BCDE,設(shè)CD、BE、AE、AD的中點(diǎn)分別為M、N、P、Q,平面ADE⊥平面BCDE.
(1)求證:平面ABC⊥平面ACD;
(2)求證:M、N、P、Q四點(diǎn)共面;
(3)求異面直線BE與MQ所成的角.
分析:(1)要證明兩個(gè)平面垂直,只需證明其中一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線即可,也就是只需證線面垂直即可,而要證線面垂直,只需證明這條直線垂直平面內(nèi)的兩條相交直線,這樣,一步步尋找成立的條件.
(2)要證四點(diǎn)共線,只需找到一個(gè)平面,是這四個(gè)點(diǎn)在這個(gè)平面內(nèi),用確定平面的方法,兩條平行線確定一個(gè)平面,即可證出.
(3)求異面直線所成角,先平移兩條異面直線中的一條,使它們成為相交直線,則相交直線所成角就是異面直線所成角或其補(bǔ)角,再放入三角形中計(jì)算即可.
解答:解:(1)證明∵平面ADE⊥平面BCDE,平面ADE∩平面BCDE=DE
AD?平面ADE,AD⊥DE
∴AD⊥平面BCDE
∵BC?平面BCDE∴AD⊥BC
又∵BC⊥DC,DC∩AD=D
∴BC⊥平面ACD,
∵BC?平面ABC
∴平面ABC⊥平面ACD
(2)證明:∵M(jìn),N,P,Q分別為CD、BE、AE、AD的中點(diǎn),
∴MN∥DE,PQ∥DE,
∴MN∥PQ,∴直線MN,PQ確定一個(gè)平面.
∴M、N、P、Q四點(diǎn)共面
(3)取BC中點(diǎn)K,連接DK,則DK∥BE,
取CK中點(diǎn)F,連接MF,則MF∥DK,
∴MF∥BE,∴∠QMP為異面直線BE,QM所成角或其補(bǔ)角.
設(shè)AC長(zhǎng)為4,則QD=DM=MC=CF=1,
∵QD⊥DM,∴QM=
2

∵M(jìn)C⊥CF,∴MF=
2

連接QF,DF,在Rt△QDF中,QD=1,DF=
5
,∴QF=
6

在△QMF中,cos∠QMF=
QM2+MF2-QF 
2QM•MF
=-
1
2

∴∠QMF=
3
,∴異面直線BE與MQ所成的角為
π
3
點(diǎn)評(píng):本題考查了平面垂直,四點(diǎn)共線,以及異面直線所成角的求法,是立體幾何中的常規(guī)題,應(yīng)當(dāng)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,沿等腰直角三角形ABC的中位線DE,將平面ADE折起,使得平面ADE⊥平面BCDE得到四棱錐A-BCDE.
(1)求證:平面ABC⊥平面ACD;
(2)過(guò)CD的中點(diǎn)M的平面α與平面ABC平行,試求平面α與四棱錐A-BCDE各個(gè)面的交線所圍成多邊形的面積與三角形ABC的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年河南省鄭州四中高考數(shù)學(xué)一輪復(fù)習(xí)綜合測(cè)試(一)(解析版) 題型:解答題

如圖,沿等腰直角三角形ABC的中位線DE,將平面ADE折起,使得平面ADE⊥平面BCDE得到四棱錐A-BCDE.
(1)求證:平面ABC⊥平面ACD;
(2)過(guò)CD的中點(diǎn)M的平面α與平面ABC平行,試求平面α與四棱錐A-BCDE各個(gè)面的交線所圍成多邊形的面積與三角形ABC的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省汕頭市高三質(zhì)量測(cè)評(píng)數(shù)學(xué)試卷2(理科)(解析版) 題型:解答題

如圖,沿等腰直角三角形ABC的中位線DE,將平面ADE折起(轉(zhuǎn)動(dòng)一定角度),得到四棱錐A-BCDE,設(shè)CD、BE、AE、AD的中點(diǎn)分別為M、N、P、Q,平面ADE⊥平面BCDE.
(1)求證:平面ABC⊥平面ACD;
(2)求證:M、N、P、Q四點(diǎn)共面;
(3)求異面直線BE與MQ所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省名校高三數(shù)學(xué)一輪復(fù)習(xí)綜合測(cè)試(一)(解析版) 題型:解答題

如圖,沿等腰直角三角形ABC的中位線DE,將平面ADE折起,使得平面ADE⊥平面BCDE得到四棱錐A-BCDE.
(1)求證:平面ABC⊥平面ACD;
(2)過(guò)CD的中點(diǎn)M的平面α與平面ABC平行,試求平面α與四棱錐A-BCDE各個(gè)面的交線所圍成多邊形的面積與三角形ABC的面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案