15.如圖,AB是⊙O的直徑,點(diǎn)C是弧$\widehat{AB}$上一點(diǎn),VC垂直⊙O所在平面,D,E分別為VA,VC的中點(diǎn).
(1)求證:DE⊥平面VBC;
(2)若VC=CA=6,⊙O的半徑為5,求點(diǎn)E到平面BCD的距離.

分析 (1)利用圓的性質(zhì)可證明:AC⊥CB.利用線面垂直的性質(zhì)定理可得:VC⊥AC,于是AC⊥平面VCB.利用三角形中位線定理可得DE∥AC,即可證明DE⊥平面VCB.
(2)設(shè)點(diǎn)E到平面BCD的距離為d,利用VE-BCD=VB-CDE解出即可得出.

解答 (1)證明:∵AB是⊙O的直徑,C是弧AB上一點(diǎn),∴AC⊥CB.
又∵VC垂直⊙O所在平面,∴VC⊥AC,∴AC⊥平面VCB.
又∵D,E分別為VA,VC的中點(diǎn),∴DE∥AC,
∴DE⊥平面VCB.
(2)解:設(shè)點(diǎn)E到平面BCD的距離為d,
由VE-BCD=VB-CDE得$\frac{1}{3}d•{S_{△BCD}}=\frac{1}{3}×8×\frac{1}{2}×3×3$,
∴$d=\frac{{8×\frac{9}{2}}}{{\frac{1}{2}×8×3\sqrt{2}}}=\frac{9}{{3\sqrt{2}}}=\frac{3}{{\sqrt{2}}}=\frac{{3\sqrt{2}}}{2}$,
即點(diǎn)E到平面BCD的距離為$\frac{{3\sqrt{2}}}{2}$.

點(diǎn)評(píng) 本題考查了空間位置關(guān)系、距離的計(jì)算、線面垂直、線線平行的判定、三角形中位線定理、等體積法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωx•cosωx-1(ω>0)的周期為π.
(1)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的取值范圍;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫出圓C和直線l的普通方程;
(Ⅱ)點(diǎn)P為圓C上動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)P(x)=x+a,q(x)=lnx,f(x)=p(x)q(x)-p(x)+2a.
(Ⅰ)設(shè)g(x)=f′(x),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>0時(shí),q(2x+1)≤2ap(x)-2a2+a+1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)已知任意a>0,存在0<x<a,使得a+xlnx>0.試研究a>0時(shí)函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.多面體ABCDEF中,AF⊥平面ABCD,DE⊥平面ABCD,AF=2,AB=AD=$\sqrt{3}$,BC=DC=1,∠BAD=60°,且B、C、E、F四點(diǎn)共面.
(1)求線段DE的長度;
(2)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.空間四點(diǎn)A、B、C、D滿足|AB|=1,|CD|=2,E、F分別是AD、BC的中點(diǎn),若AB與CD所在直線的所成角為60°,則|EF|=$\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{7}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.梯形ABCD中,AB∥CD,CD=2AB,AC交BD于O點(diǎn),過O點(diǎn)的直線交AD、BC分別于E、F點(diǎn),$\overrightarrow{DE}$=m$\overrightarrow{DA}$,$\overrightarrow{CF}$=n$\overrightarrow{CB}$,則$\frac{1}{2-m}$+$\frac{1}{2-n}$=( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=f(x)為定義在[-2,2]上的可導(dǎo)的偶函數(shù),當(dāng)0≤x≤2時(shí),f′(x)>4,且f(1)=2,則不等式f(x)≥x2+1的解集為[-2,-1]∪[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,…,由以上等式推測(cè)到一個(gè)一般的結(jié)論,對(duì)于n∈N*,13+23+33+…+n3=${[\frac{n(n+1)}{2}]^2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案