分析 (1)利用圓的性質(zhì)可證明:AC⊥CB.利用線面垂直的性質(zhì)定理可得:VC⊥AC,于是AC⊥平面VCB.利用三角形中位線定理可得DE∥AC,即可證明DE⊥平面VCB.
(2)設(shè)點(diǎn)E到平面BCD的距離為d,利用VE-BCD=VB-CDE解出即可得出.
解答 (1)證明:∵AB是⊙O的直徑,C是弧AB上一點(diǎn),∴AC⊥CB.
又∵VC垂直⊙O所在平面,∴VC⊥AC,∴AC⊥平面VCB.
又∵D,E分別為VA,VC的中點(diǎn),∴DE∥AC,
∴DE⊥平面VCB.
(2)解:設(shè)點(diǎn)E到平面BCD的距離為d,
由VE-BCD=VB-CDE得$\frac{1}{3}d•{S_{△BCD}}=\frac{1}{3}×8×\frac{1}{2}×3×3$,
∴$d=\frac{{8×\frac{9}{2}}}{{\frac{1}{2}×8×3\sqrt{2}}}=\frac{9}{{3\sqrt{2}}}=\frac{3}{{\sqrt{2}}}=\frac{{3\sqrt{2}}}{2}$,
即點(diǎn)E到平面BCD的距離為$\frac{{3\sqrt{2}}}{2}$.
點(diǎn)評(píng) 本題考查了空間位置關(guān)系、距離的計(jì)算、線面垂直、線線平行的判定、三角形中位線定理、等體積法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com