正方形ABCD邊長為2,H為AD的中點,在正方形內(nèi)隨機(jī)取一點,則|PH|<
2
的概率為
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:關(guān)鍵是要找出|PH|<
2
的點對應(yīng)的圖形的面積,并將其和正方形面積一齊代入幾何概型計算公式進(jìn)行求解.
解答: 解:在正方形ABCD內(nèi)隨機(jī)取一點P,|PH|<
2
的軌跡是以H為圓心,
2
為半徑的
1
4
圓,面積為1+
1
4
×π×2
=1+
π
2

∵正方形的面積為4,
∴|PH|<
2
的率為
1+
π
2
4
=
2+π
8

故答案為:
2+π
8
點評:本題考查的知識點是幾何概型,幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=4x-3•2x+3.
(1)若函數(shù)的定義域為x∈[0,2],求該函數(shù)的值域.
(2)若該函數(shù)的值域為[7,43],試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種商品x(百件)的總成本函數(shù)為C(x)=
1
3
x3-6x2
+29x+15(萬元),利潤R(x)=20x-x2(萬元)則生產(chǎn)這種商品所獲利潤的最大值為多少?此時生產(chǎn)了多少商品(百件)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=4,
1
tanβ
=
1
3
,則則tan(α+β)=(  )
A、
7
11
B、-
7
11
C、
7
13
D、-
7
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為2,PA是⊙O的切線,A為切點,且PA=2
2
,過點P的一條割線與⊙O交于B,C兩點,圓心O到割線的距離為
3
,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在2002年春季,一家著名的全國性連鎖服裝店進(jìn)行了一項關(guān)于當(dāng)年秋季服裝流行色的民意調(diào)查,調(diào)查者通過向顧客發(fā)放飲料,并讓顧客通過挑選飲料杯上印著的顏色來對自己喜歡的服裝顏色“投票”根據(jù)這次調(diào)查結(jié)果,在某大城市A,服裝顏色的眾數(shù)是紅色,而當(dāng)年全國服裝協(xié)會發(fā)布的是咖啡色
(1)這個結(jié)果是否代表A城市的人的想法?
(2)你認(rèn)為這兩種調(diào)查的差異是由什么引起的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a1=7,a2為整數(shù),當(dāng)且僅當(dāng)n=4時,Sn取得最大值.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(9-an)•2n-1,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對a,b∈R,記max{a,b}=
a,(a≥b)
b,(a<b)
,則函數(shù)f(x)=max{|x+1|,x2-2x+
9
4
}
( 。
A、有最大值
3
2
,無最小值
B、有最大值
1
2
,無最小值
C、有最小值
3
2
,無最大值
D、有最小值
1
2
,無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,tanA=
1
2
,tanB=
1
3
,且最長邊的長度為1,求:
(1)∠C的大;
(2)△ABC最短邊的長.

查看答案和解析>>

同步練習(xí)冊答案