在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,92m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm,求數(shù)列{bm}的前m項(xiàng)和Sm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}滿足a1=1,a2=-13,an+2-2an+1+an=2n-6.
(1)設(shè)bn=an+1-an,求數(shù)列{bn}的通項(xiàng)公式.
(2)求n為何值時(shí)an最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖表中數(shù)陣為“森德拉姆素?cái)?shù)篩”,其特點(diǎn)是每行每列都成等差數(shù)列,記第i行第j列的數(shù)為aij(i,j∈N*),則
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
①a99=________;
②表中數(shù)82共出現(xiàn)________次.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列{an}的通項(xiàng)公式是an=,若前n項(xiàng)和為10,則項(xiàng)數(shù)n為( )
A.11 B.99 C.120 D.121
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知n∈N*,數(shù)列{dn}滿足dn=,數(shù)列{an}滿足an=d1+d2+d3+…+d2n;又知數(shù)列{bn}中,b1=2,且對任意正整數(shù)m,n,b=b.
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)將數(shù)列{bn}中的第a1項(xiàng),第a2項(xiàng),第a3項(xiàng),……,第an項(xiàng),……,刪去后,剩余的項(xiàng)按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2 013項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知直線l經(jīng)過點(diǎn)P(-2,5),且斜率為-,則直線l的方程為( )
A.3x+4y-14=0 B.3x-4y+14=0
C.4x+3y-14=0 D.4x-3y+14=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)圓C:(x-3)2+(y-5)2=5,過圓心C作直線l交圓于A、B兩點(diǎn),交y軸于點(diǎn)P,若A恰好為線段BP的中點(diǎn),則直線l的方程為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com