已知函數(shù)f(x)=x-2
(1)求該函數(shù)的定義域;           
(2)判斷該函數(shù)的奇偶性,并證明.
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.求該函數(shù)的定義域;           
(2)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷.
解答: 解:(1)∵f(x)=x-2=
1
x2

∴要使函數(shù)有意義,則x≠0,
故函數(shù)的定義域?yàn)閧x|x≠0},
(2)f(-x)=
1
(-x)2
=
1
x2
=f(x),
則函數(shù)是偶函數(shù).
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解以及函數(shù)奇偶性的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,Sn為其前n項(xiàng)和,若S4026-S1=0,O為坐標(biāo)原點(diǎn),點(diǎn)M(1,-a1)、N(2014,a2014),則
OM
ON
=(  )
A、0B、-1
C、2014D、-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如下樣本數(shù)據(jù):
X345678
y42-11-2-3
得到的回歸方程為
y
=
b
x+
a
,則(  )
A、
a
>0,
b
<0
B、
a
>0,
b
>0
C、
a
<0,
b
<0
D、
a
<0,
b
>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z為復(fù)數(shù),則“|z|=1”是“z+
1
z
是實(shí)數(shù)”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
16
3
B、
20
3
C、
15
2
D、
13
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x||x-1|<1},B={x|y=
1
1-x
},則圖中陰影部分表示的集合是( 。
A、{x|x≥1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|1≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α為銳角,若cos(α+
π
6
)=
4
5
,則sin(α-
π
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},a1=3,前n項(xiàng)和為Sn,又等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,若b2+S2=12,q=
S2
b2

(1)求an與bn;
(2)設(shè)cn=an+bn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在圓中有性質(zhì)“半徑為r的圓的面積為πr2”,類比圓的該條性質(zhì),在球中應(yīng)有結(jié)論( 。
A、半徑為r的球的體積為
4
3
πr3
B、半徑為r的球的表面積為4πr2
C、球心與截面圓圓心的連線垂直于截面
D、與球心距離相等的兩個(gè)截面圓面積相等

查看答案和解析>>

同步練習(xí)冊(cè)答案