甲、乙兩人參加知識(shí)竟賽,共有10個(gè)不同的題目,其中選擇題6題,判斷題4題,若甲乙兩人分別各抽取一題,則甲抽到選擇題,乙抽到判斷題的概率是( 。
A、
10
19
B、
4
15
C、
15
19
D、
14
15
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:甲抽到選擇題的概率是
6
10
,乙抽到判斷題的概率是
4
9
,由此能求出甲抽到選擇題,乙抽到判斷題的概率.
解答: 解:甲抽到選擇題,乙抽到判斷題的概率是:
p=
6
10
×
4
9
=
4
15

故選:B.
點(diǎn)評(píng):本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件的概率計(jì)算公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
π
2
-α)=
3
5
,則cos(π-2α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
1
x

(Ⅰ)判斷函數(shù)的奇偶性,并加以證明;
(Ⅱ)用定義證明f(x)在[1,
3
]
上是增函數(shù);
(Ⅲ)求出函數(shù)f(x)在[1,
3
]
的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0,f(x)=
1
ex+2011
+a,則f(ln
1
2
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2cos2x+sin2x-1,給出下列四個(gè)命題:
(1)函數(shù)在區(qū)間[
π
8
,
8
]
上是減函數(shù);
(2)直線x=
π
8
是函數(shù)圖象的一條對(duì)稱軸;
(3)函數(shù)f(x)的圖象可由函數(shù)y=
2
sin2x的圖象向左平移
π
4
而得到;
(4)若 x∈[0,
π
2
]
,則f(x)的值域是[0,
2
]

其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x≤1
|y|≤x
,則z=2x+3y的最小值是
 
;在平面直角坐標(biāo)系中,此不等式組表示的平面區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=4x2-kx-8在(5,20)上有單調(diào)性,則實(shí)數(shù)k的取值范圍是( 。
A、[20,80]
B、(-∞,20]∪[80,+∞)
C、[40,160]
D、(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是冪函數(shù),且滿足
f(9)
f(3)
=2,則f(
1
9
)
=(  )
A、
1
2
B、
1
4
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={t|t=
p
q
,其中p+q=5,且p、q∈N*}所有真子集個(gè)數(shù)( 。
A、3B、7C、15D、31

查看答案和解析>>

同步練習(xí)冊(cè)答案