S1=1+
1
12
+
1
22
,S2=1+
1
22
+
1
32
S3=1+
1
32
+
1
42
,…,Sn=1+
1
n2
+
1
(n+1)2
,設S=
S1
+
S2
+…+
Sn

(1)設Tn=S,求Tn(用含n的代數(shù)式表示)
(2)求使Tn≥2011的最小正整數(shù)值.
分析:(1)由Sn=1+
1
n2
+
1
(n+1)2
=
[n(n+1)+1]2
n2•(n+1)2
,知
Sn
=
[n(n+1)+1]2
n2•(n+1)2
=
n(n+1)+1
n(n+1)
=1+
1
n
-
1
n+1
,由此能求出Tn=n+1-
1
n+1

(2)由Tn=n+1-
1
n+1
≥2011,知
(n+1)2-1
n+1
=
n2+2n
n+1
≥2011
,由n∈N*,知n2+2n≥2011n+2011,由此能求出n的最小值.
解答:解:(1)∵Sn=1+
1
n2
+
1
(n+1)2

=
n4+2n3+3n2+2n+1
n2•(n+1)2

=
[n(n+1)+1]2
n2•(n+1)2

Sn
=
[n(n+1)+1]2
n2•(n+1)2
=
n(n+1)+1
n(n+1)
=1+
1
n
-
1
n+1
,
所以
S1
=1+1-
1
2
,
S2
=1+
1
2
-
1
3
,
S3
=1+
1
3
-
1
4
,

Sn
=1+
1
n
-
1
n+1

S=
S1
+
S2
+…+
Sn

=1+1-
1
2
+1+
1
2
-
1
3
+1+
1
3
-
1
4
+…+1+
1
n
-
1
n+1

=n+[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=n+1-
1
n+1

∵Tn=S,∴Tn=n+1-
1
n+1

(2)∵Tn=n+1-
1
n+1
≥2011
(n+1)2-1
n+1
=
n2+2n
n+1
≥2011
,
∵n∈N*,∴n2+2n≥2011n+2011,
即n2-2009n-2011≥0,
解得n≥
2009+
4028077
2
,或n≤
2009-
4028077
2

∵n∈N*,∴n的最小值是2008.
點評:本題考查數(shù)列與不等式的綜合運用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強,難度大,有一定的探索性,對數(shù)學思維能力要求較高,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

同步練習冊答案