【題目】函數(shù)f(x)=log (x2﹣4x﹣5)的單調(diào)遞減區(qū)間為 .
【答案】(5,+∞)
【解析】解:要使函數(shù)有意義,則x2﹣4x﹣5>0,即x>5或x<﹣1.
設(shè)t=x2﹣4x﹣5,則當(dāng)x>5時,函數(shù)t=x2﹣4x﹣5單調(diào)遞增,
當(dāng)x<﹣1時,函數(shù)t=x2﹣4x﹣5單調(diào)遞減.
∵函數(shù)y=log t,在定義域上為單調(diào)遞減函數(shù),
∴根據(jù)復(fù)合函數(shù)的單調(diào)性之間的關(guān)系可知,
當(dāng)x>5時,函數(shù)f(x)單調(diào)遞減,
即函數(shù)f(x)的遞減區(qū)間為(5,+∞).
所以答案是:(5,+∞)
【考點(diǎn)精析】本題主要考查了復(fù)合函數(shù)單調(diào)性的判斷方法的相關(guān)知識點(diǎn),需要掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),向量 =(sinα,1), =(cosα,0), =(﹣sinα,2),點(diǎn)P是直線AB上的一點(diǎn),且 = .
(1)若O,P,C三點(diǎn)共線,求tanα的值;
(2)在(Ⅰ)條件下,求 +sin2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國際學(xué)術(shù)會議上,來自四個國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會說英語.
乙是法國人,還會說日語.
丙是英國人,還會說法語.
丁是日本人,還會說漢語.
戊是法國人,還會說德語.
則這五位代表的座位順序應(yīng)為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=(m2﹣m﹣1)x﹣5m﹣3在(0,+∞)上是增函數(shù),又g(x)=loga (a>1).
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)x∈(t,a)時,g(x)的值域?yàn)椋?,+∞),試求a與t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 ( 為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程為 ,求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為a,E是棱DD1的中點(diǎn)
(1)求三棱錐E﹣A1B1B的體積;
(2)在棱C1D1上是否存在一點(diǎn)F,使B1F∥平面A1BE?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李莊村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收管理費(fèi)2元,月用電不超過30度每度0.5元,超過30度時,超過部分按每度0.6元.
方案二:不收管理費(fèi),每度0.58元.
(1)求方案一收費(fèi)L(x)元與用電量x(度)間的函數(shù)關(guān)系;
(2)李剛家九月份按方案一交費(fèi)35元,問李剛家該月用電多少度?
(3)李剛家月用電量在什么范圍時,選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A、B的任意一點(diǎn).
(1)求證:BC⊥平面PAC;
(2)若AC=6,求三棱錐C﹣PAB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。
(1)證明:f(x)≥5;
(2)若f(1)<6成立,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com