參數(shù)方程為
x=
t
+1
y=1-2
t
(t為參數(shù))的曲線C的普通方程為( 。
A、y=-2x+3
B、y=-2x+3(x≥0)
C、y=-2x+3(x>1)
D、y=-2x+3(x≥1)
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:直接消去參數(shù),得到普通方程即可.
解答: 解:∵參數(shù)方程為
x=
t
+1
y=1-2
t
(t為參數(shù)),
t
=x-1,代入第二個(gè)等式,得
y=1-2(x-1)=-2x+3,(x≥1),
即y=-2x+3,(x≥1),
故選:D.
點(diǎn)評(píng):本題重點(diǎn)考查了直線的普通方程和參數(shù)方程的互化等知識(shí),注意參數(shù)取值范圍,防止范圍擴(kuò)大或縮。畬儆诨A(chǔ)題,也是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為可導(dǎo)函數(shù),且滿足
lim
△x→0
f(1+△x)-f(1)
△x
=-1
,則函數(shù)y=f(x)在x=1處的導(dǎo)數(shù)值為(  )
A、1B、-1
C、1或-1D、以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,3]上任取一個(gè)實(shí)數(shù),則此實(shí)數(shù)小于1的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10的值為( 。
A、7B、-5C、5D、-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上不共線的四點(diǎn)O,A,B,C,若
OA
-4
OB
+3
OC
=0,則
|
AB|
|
BC|
=( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+3mx2+nx+m2在x=-1時(shí)有極值為0,則m+n=( 。
A、11B、4或11C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上可導(dǎo)的函數(shù)f(x)的圖形如圖所示,則關(guān)于x的不等式x•f′(x)<0的解集為( 。
A、(-∞,-1)∪(0,1)
B、(-1,0)∪(1,+∞)
C、(-2,-1)∪(1,2)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
2
sin(2x-
π
6
)
的圖象可以看作是函數(shù)y=
1
2
sin2x的圖象(  )
A、向左平移
π
6
B、向右平移
π
6
C、向左平移
π
12
D、向右平移
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是(-a,a)上的可導(dǎo)奇函數(shù),且f'(x)不恒為零,則f'(x)在(-a,a)上( 。
A、必為奇函數(shù)
B、必為偶函數(shù)
C、是非奇非偶函數(shù)
D、可能為奇函數(shù),也可能是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案