巳知橢圓的離心率是.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過點(diǎn)A(1,0)的直線,使點(diǎn)C(2,0)關(guān)于直線的對(duì)稱點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.
;⑵橢圓的焦距的取值范圍是.

試題分析:⑴,,再將點(diǎn)的坐標(biāo)代入橢圓的方程,這樣便有三個(gè)方程,三者聯(lián)立,即可求出,從而得橢圓的方程.⑵顯然斜率不存在或斜率等于0時(shí),不可能滿足題意.故可設(shè)直線l的方程為:,這樣可將點(diǎn)C(2, 0)關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)用表示出來,然后代入橢圓的方程,從而得一關(guān)于的方程:.設(shè),因此原問題轉(zhuǎn)化為關(guān)于t的方程有正根.根據(jù)二次方程根的分布可得.進(jìn)而求得橢圓的焦距的取值范圍.

試題解析:⑴,
∵點(diǎn)P(2,1)在橢圓上,∴     5分
⑵依題意,直線l的斜率存在且不為0,則直線l的方程為:.
設(shè)點(diǎn)C(2, 0)關(guān)于直線l的對(duì)稱點(diǎn)為,則

若點(diǎn)在橢圓上,則

設(shè),因此原問題轉(zhuǎn)化為關(guān)于t的方程有正根.
①當(dāng)時(shí),方程一定有正根;
②當(dāng)時(shí),則有
∴綜上得.
又橢圓的焦距為.
故橢圓的焦距的取值范圍是(0,4]         13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)是橢圓的一個(gè)頂點(diǎn),的長(zhǎng)軸是圓的直徑,、是過點(diǎn)且互相垂直的兩條直線,其中交圓兩點(diǎn),交橢圓于另一點(diǎn).

(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,長(zhǎng)軸的左右端點(diǎn)分別為.
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與曲線有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).
求證:以為直徑的圓過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點(diǎn),若過點(diǎn)M(2,0)的直線與橢圓相交于不同兩點(diǎn)A和B,且滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線相交于兩點(diǎn),軸、軸分別相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線的方程為,求外接圓的方程;
(2)判斷是否存在直線,使得、是線段的兩個(gè)三等分點(diǎn),若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間上分別取一個(gè)數(shù),記為,則方程,表示焦點(diǎn)在y軸上的橢圓的概率是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)M在該橢圓上,且,則點(diǎn)M到y(tǒng)軸的距離為(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(已知雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,A是右頂點(diǎn),B是虛軸的上端點(diǎn),F(xiàn)是左焦點(diǎn),
當(dāng)BF⊥AB時(shí),此類雙曲線稱為“黃金雙曲線”,其離心率為,類比“黃金雙曲線”,推算出“黃金橢圓”(如圖)的離心率=_________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:+y2=1(a>1)的上頂點(diǎn)為M(0,1),兩條過M的動(dòng)弦MA、MB滿足MA⊥MB.
(1)當(dāng)坐標(biāo)原點(diǎn)到橢圓E的準(zhǔn)線距離最短時(shí),求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對(duì)于給定的實(shí)數(shù)a(a>1),動(dòng)直線AB是否經(jīng)過一定點(diǎn)?如果經(jīng)過,求出定點(diǎn)坐標(biāo)(用a表示);反之,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案