已知c是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距,則
c
a+b
的取值范圍是
 
考點:雙曲線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:利用c=
a2+b2
,2(a2+b2)≥(a+b)2,a>0,b>0.即可得出.
解答: 解:∵c=
a2+b2
,2(a2+b2)≥(a+b)2,a>0,b>0.
∴1>
c
a+b
=
a2+b2
a+b
2
2
,
c
a+b
的取值范圍是[
2
2
,1)

故答案為:[
2
2
,1)
點評:本題考查了雙曲線的標準方程及其性質、基本不等式的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=2py(p>0),拋物線上一點A(a,4)到拋物線旳準線的距離為5.
(1)求拋物線的方程;
(2)過點M(2,-1)作拋物線的兩條切線,切點分別為B,C,求證:MB⊥MC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先化簡,再求值:
1
x+2
-
x2-4x+4
x2-x
÷(x+1-
3
x-1
),其中x滿足x2+2x-4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)的滿足性質:①定義域為R;②對于任意x1、x2,都有f(x1+x2)=f(x1)•f(x2);③在R上是減函數(shù),請寫出一個滿足上述性質的函數(shù)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點分別為F1、F2,以F1F2為直徑的圓交雙曲線于點A,若∠F1F2A=
π
6
,則雙曲線的離心率為( 。
A、1+
3
B、4+2
3
C、4-
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin
2
x(a>0)在區(qū)間(0,1)內至少取得兩次最小值,且至多取得三次最大值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線Ax+By+C=0關于直線x+y=0對稱的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(參考公式:[ln(1+x)]′=
1
1+x
)設函數(shù)f(x)=x-
ln(1+x)
1+x

(1)令N(x)=(1+x)2-1+ln(1+x),判斷并證明N(x)在(-1,+∞)上的單調性,求N(0);
(2)求f(x)定義域上的最小值;
(3)是否存在實數(shù)m、n滿足0≤m<n,使得f(x)在區(qū)間[m,n]上的值域也為[m,n]?

查看答案和解析>>

同步練習冊答案