【題目】為了增強學生的安全意識,某校組織了一次全校2500名學生都參加的安全知識考試,閱卷后,學校隨機抽取了100份考卷進行分析統(tǒng)計,發(fā)現(xiàn)考試成績(x)的最低分為51分,最高分為滿分100分,并繪制了如下尚不完整的統(tǒng)計圖表.請根據(jù)圖表提供的信息,解答下列問題:

(1)填空:______,______,______;

(2)將頻數(shù)分布直方圖補充完整;

(3)該校對考試成績?yōu)?/span>的學生進行獎勵,按成績從高分到低分設(shè)一二三等獎,并且一二三等獎的人數(shù)比例為1:3:6,請你估算全校獲得二等獎的學生人數(shù).

【答案】(1)1025,0.25;(2)見解析;(3)90

【解析】

1)利用樣本總數(shù)這組的頻率即可求解.

2)根據(jù)(1)求出的數(shù)據(jù)補全頻數(shù)分布直方圖即可.

3)利用全校2500名學生數(shù)考試成績?yōu)?/span>考卷占抽取了的考卷數(shù)獲得二等獎的學生人數(shù)占獲獎學生數(shù)即可得到結(jié)論.

(1),,

綜上,;

(2)補全頻數(shù)分布直方圖如圖所示;

(3)全校獲得二等獎的學生人數(shù):.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】安慶市某中學教研室從高二年級隨機抽取了名學生的十月份語文成績(滿分分,成績均為不低于分的整數(shù)),得到如圖所示的頻率分布直方圖.

1)若該校高二年級共有學生人,試估計十月份月考語文成績不低于分的人數(shù);

2)為提高學生學習語文的興趣,學校決定在隨機抽取的名學生中成立“二幫一”小組,即從成績中選兩位同學,共同幫助中的某一位同學.已知甲同學的成績?yōu)?/span>分,乙同學的成績?yōu)?/span>分,求甲乙恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面有五個命題:

①函數(shù)y=sin4x-cos4x的最小正周期是;

②終邊在y軸上的角的集合是{α|α=;

③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;

④把函數(shù);

⑤函數(shù)

其中真命題的序號是__________(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,角為始邊,終邊與單位圓相交于點.過點的圓的切線交軸于點,點的橫坐標關(guān)于角的函數(shù)記為. 則下列關(guān)于函數(shù)的說法正確的( )

A. 的定義域是

B. 的圖象的對稱中心是

C. 的單調(diào)遞增區(qū)間是

D. 對定義域內(nèi)的均滿足

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為正數(shù)的數(shù)列的前項和為,且.

1)求證:數(shù)列不是等差數(shù)列;

2)是否存在整數(shù),使得對任意的都成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有6張卡片,上面分別寫著如下六個定義域為的函數(shù):, ,, ,從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得新函數(shù)為奇函數(shù)的概率是 __________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左焦點為F,上頂點為A,直線AF與直線 垂直,垂足為B,且點A是線段BF的中點.

(I)求橢圓C的方程;

(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線 交于點Q,且,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個長方形的三邊構(gòu)成(如圖所示).已知隧道總寬度,行車道總寬度,側(cè)墻面高 ,弧頂高

)建立適當?shù)闹苯亲鴺讼担髨A弧所在的圓的方程.

)為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請計算車輛通過隧道的限制高度是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

同步練習冊答案