8.設(shè)定義在R上的奇函數(shù)y=f(x),滿足對(duì)任意t∈R都有f(t)=f(1-t),且$x∈[{0,\frac{1}{2}}]$時(shí),f(x)=-x2,則$f({\frac{3}{2}})$的值等于(  )
A.$\frac{9}{4}$B.$-\frac{9}{4}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

分析 根據(jù)已知可得函數(shù)y=f(x)是周期為2的周期函數(shù),結(jié)合$x∈[{0,\frac{1}{2}}]$時(shí),f(x)=-x2,可得答案.

解答 解:∵函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(t)=f(1-t),
∴f(x+2)=f[1-(x+2)]=f(-x-1)=-f(x+1)=-f[1-(x+1)]=-f(-x)=f(x),
即函數(shù)y=f(x)是周期為2的周期函數(shù),
故f($\frac{3}{2}$)=f($-\frac{1}{2}$)=-f($\frac{1}{2}$),
又∵$x∈[{0,\frac{1}{2}}]$時(shí),f(x)=-x2
∴f($\frac{3}{2}$)=f($-\frac{1}{2}$)=-f($\frac{1}{2}$)=$(\frac{1}{2})^{2}$=$\frac{1}{4}$,
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)的對(duì)稱(chēng)性,函數(shù)的周期性,函數(shù)求值,根據(jù)已知分析出函數(shù)y=f(x)是周期為2的周期函數(shù),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\left\{\begin{array}{l}{4-x,}&{x≤0}\\{\sqrt{4-{x}^{2},}}&{0<x≤2}\end{array}\right.$,則${∫}_{-2}^{2}$f(x)dx的值為π+10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.?dāng)?shù)列{an}滿足a1=1,an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N*
(1)證明:數(shù)列{$\frac{2^n}{a_n}$}是等差數(shù)列;
(2)設(shè)bn=$\frac{{{2^{n+1}}}}{a_n}$+3,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n為奇數(shù)}\\{{a}_{n}-3n,n為偶數(shù)}\end{array}\right.$
(1)求a2,a3,a4的值;
(2)求證:數(shù)列{a2n-$\frac{3}{2}$}是等比數(shù)列;
(3)求數(shù)列{an}的前n項(xiàng)和Sn,并求滿足Sn>0的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,角A,B,C對(duì)邊分別是a,b,c.已知a=3,c=2,cosB=$\frac{1}{4}$.
(Ⅰ)求sinA;
(Ⅱ)設(shè)f(x)=bsin2x+$\sqrt{30}$sinxcosx(x∈R),求f(x)的最小正周期和對(duì)稱(chēng)軸的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知三條不重合的直線l,m,n與平面α,下面結(jié)論正確的是(  )
A.l∥α,m∥α,則l∥mB.l⊥α,m⊥α,則l∥mC.l⊥n,m⊥n,則l∥mD.l?α,m∥α,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.(lg2)2+lg2•lg50+lg25+eln3=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足f(-x)=f(x),且當(dāng)x<0,f(x)=3x+1,若a=2${\;}^{\frac{4}{3}}$,b=4${\;}^{\frac{2}{5}}$,c=25${\;}^{\frac{1}{3}}$,則有(  )
A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(b)<f(a)<f(c)D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.《聊齋志異》中有這樣一首詩(shī):“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無(wú)所阻,額上墳起終不悟.”在這里,我們稱(chēng)形如以下形式的等式具有“穿墻術(shù)”:
2$\sqrt{\frac{2}{3}}$=$\sqrt{2\frac{2}{3}}$,3$\sqrt{\frac{3}{8}}$=$\sqrt{3\frac{3}{8}}$,4$\sqrt{\frac{4}{15}}$=$\sqrt{4\frac{4}{15}}$,5$\sqrt{\frac{5}{24}}$=$\sqrt{5\frac{5}{24}}$
則按照以上規(guī)律,若8$\sqrt{\frac{8}{n}}$=$\sqrt{8\frac{8}{n}}$具有“穿墻術(shù)”,則n=( 。
A.7B.35C.48D.63

查看答案和解析>>

同步練習(xí)冊(cè)答案