已知函數(shù)(a,b均為正常數(shù)).
(1)求證:函數(shù)在內(nèi)至少有一個零點;
(2)設(shè)函數(shù)在處有極值,
①對于一切,不等式恒成立,求的取值范圍;
②若函數(shù)f(x)在區(qū)間上是單調(diào)增函數(shù),求實數(shù)的取值范圍.
(1)詳見解析;(Ⅱ)①②.
解析試題分析:(Ⅰ)證明函數(shù)在內(nèi)至少有一個零點,可由零點的存在性定理考察和的符號,若且,則結(jié)論成立,若,可將區(qū)間進行適當分割,再依上面方法進行,直到找到函數(shù)的零點的存在區(qū)間;(Ⅱ)易知,從而求出的值.
①不等式恒成立可化分離參數(shù)轉(zhuǎn)化為求函數(shù)在區(qū)間上的最值問題,這是一個普通的三角函數(shù)問題,通過判斷三角函數(shù)的單調(diào)性容易解決;②函數(shù)在一個已知區(qū)間上為增函數(shù),求參數(shù)的取值范圍問題,通常有兩種方法,一是用在這個區(qū)間上導(dǎo)函數(shù)的符號確定,一般三角函數(shù)不用此方法,二是求出函數(shù)的單調(diào)遞增區(qū)間,它必包含已知區(qū)間,然后考察參數(shù)的取值范圍.
試題解析:(1)證明:,
所以,函數(shù)在內(nèi)至少有一個零點 4分
(2)由已知得:所以a=2,
所以 5分
①不等式恒成立可化為:
記函數(shù)
,所以在恒成立 8分
函數(shù)在上是增函數(shù),最小值為
所以, 所以的取值范圍是 10分
②由得:,所以 11分
令,可得 13分
∵函數(shù)在區(qū)間()上是單調(diào)增函數(shù),
∴ 14分
∴,
∵,∴, ∴ ∴ 16分
考點:函數(shù)的零點、三角函數(shù)的性質(zhì).
科目:高中數(shù)學 來源: 題型:解答題
設(shè)定義在上的奇函數(shù)
(1).求值;(4分)
(2).若在上單調(diào)遞增,且,求實數(shù)的取值范圍.(6分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當時,畫出函數(shù)的簡圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
(1)當時,判斷并證明的奇偶性;
(2)是否存在實數(shù),使得是奇函數(shù)?若存在,求出;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù).
(1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)設(shè),且,若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè),,其中是常數(shù),且.
(1)求函數(shù)的極值;
(2)證明:對任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對任意正數(shù)都有:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com