精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的極坐標方程和的直角坐標方程;

2)直線與曲線分別交于第一象限內,兩點,求.

【答案】1,.2

【解析】

1)由曲線的參數方程,消去參數,求得曲線普通方程,再結合極坐標與直角坐標的互化公式,即可求得曲線的極坐標方程,進而根據極坐標與直角坐標的互化,求得曲線的直角坐標方程.

2)設,分別求得,根據極坐標的幾何意義,即可求解.

1)由題意,曲線的參數方程為為參數),即

平方相加,可得曲線,即

又由

代入,可得曲線的極坐標方程為

曲線的極坐標方程為,可得,

所以曲線的直角坐標方程為,即.

2)依題意可設,

所以,且,即,

所以,

因為點在第一象限,所以,即,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為實現有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結合某貧困村水質優(yōu)良的特點,決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進行養(yǎng)殖試驗,試驗后選擇其中一種進行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨立.

1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數為,求的分布列和數學期望;

2)試驗后發(fā)現乙種魚苗較好,扶貧工作組決定購買尾乙種魚苗進行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實施對能夠自然成活的魚苗不產生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”…江南梅雨的點點滴滴都流露著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)20092018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

1)計算的值,并用樣本平均數估計鎮(zhèn)明年梅雨季節(jié)的降雨量;

2鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,畝產量受降雨量的影響較大(把握超過八成).而乙品種楊梅這10年的畝產量(/畝)與降雨量的發(fā)生頻數(年)如列聯表所示(部分數據缺失).請你完善列聯表,幫助老李排解憂愁,試想來年應種植哪個品種的楊梅受降雨量影響更。坎⒄f明理由.

畝產量\降雨量

200400之間

200400之外

合計

2

1

合計

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若曲線處的切線與直線垂直,求實數a的值;

2)若函數上單調遞增,求實數a的取值范圍;

3)當時,若方程有兩個相異實根,,,求證

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,其焦距為,點在橢圓上,,直線的斜率為為半焦距)·

1)求橢圓的方程;

2)設圓的切線交橢圓兩點(為坐標原點),求證:;

3)在(2)的條件下,求的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱臺中,底面是菱形,底面,且,是棱的中點.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4一4:坐標系與參數方程

在平面直角坐標系xOy中,曲線的參數方程為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線 是圓心的極坐標為()且經過極點的圓

(1)求曲線C1的極坐標方程和C2的普通方程;

(2)已知射線分別與曲線C1,C2交于點A,B(點B異于坐標原點O),求線段AB的長

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】針對時下的抖音熱某校團委對學生性別和喜歡抖音是否有關作了一次調查,其中被調查的男女生人數相同,男生喜歡抖音的人數占男生人數的,女生喜歡抖音的人數占女生人數,若有的把握認為是否喜歡抖音和性別有關則調查人數中男生可能有( )人

附表:

0.050

0.010

3.841

6.635

附:

A.20B.40C.60D.80

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,點在面內的射影為,,點到平面的距離為,且直線垂直.

(Ⅰ)在棱上找一點,使直線與平面平行,并說明理由;

(Ⅱ)在(Ⅰ)的條件下,求二面角的大。

查看答案和解析>>

同步練習冊答案