18.已知正四棱錐P-ABCD的側棱與底面所成角為60°,各頂點都在球O的球面上,且AB=$\sqrt{6}$,則球O的表面積為( 。
A.16πB.12πC.$\frac{32}{3}$πD.

分析 畫出圖形,正四棱錐P-ABCD的外接球的球心在它的高PO1上,記為O,求出PO1,OO1,解出球的半徑,求出球的表面積.

解答 解:正四棱錐P-ABCD的外接球的球心在它的高PO1上,
記為O,PO=AO=R,PO1=$\frac{\sqrt{2}}{2}×\sqrt{6}×\sqrt{3}$=3,OO1=R-3,或OO1=3-R(此時O在PO1的延長線上),
在Rt△AO1O中,R2=($\frac{\sqrt{2}}{2}×\sqrt{6}$)2+(R-3)2得R=2,
∴球的表面積S=16π,
故選:A.

點評 本題考查球的表面積,球的內接體問題,考查計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}的前n項和為Sn,對任意n∈N*都有Sn=$\frac{2}{3}$an-$\frac{1}{3}$,若-1<Sk<2,則正整數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=|3x-1|,a∈[$\frac{1}{3},1)$,若函數(shù)u(x)=f(x)-a有兩個不同的零點x1、x2(x1<x2),υ(x)=f(x)$-\frac{a}{2a+1}$有兩個不同的零點x3、x4(x3<x4),則(x4-x3)+(x2-x1)的最小值為(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某程序框圖如圖所示,該程序運行后輸出的k的值是( 。
A.6B.8C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.命題?x∈R,x2>100的否定是?x∈R,x2≤100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.2015年3月22日,長沙某協(xié)會在“保護湘江,愛我母親河”活動中共計放生了青魚、草魚、鯽魚數(shù)百萬尾.若這些魚中三種魚所占比例一樣,現(xiàn)從中抽取5尾檢查魚的健康狀況,求其中青魚的尾數(shù)X的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.比較兩個實數(shù)的大。0.5-2>0.5-0.8(填上“>或<“).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知拋物線的頂點在原點,準線方程是y=4,則該拋物線的標準方程為(  )
A.x2=16yB.y2=-16xC.y2=16xD.x2=-16y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)=lnx-ax+1(a∈R).
(1)求動點f(x)的解析式;
(2)當a=1,求函數(shù)f(x)的單調區(qū)間;
(3)若函數(shù)y=f(x)在R上恰好有5個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案