13.[示范高中]設(shè)x,y滿足的約束條件為$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=4ax+by(a>0,b>0)的最大值為8,則a2+b2的最小值為2.

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)z=4ax+by(a>0,b>0)的最大值是8,確定a,b之間的關(guān)系,利用目標(biāo)函數(shù)的幾何意義確定函數(shù)的最小值.

解答 解:作出不等式對(duì)應(yīng)的平面區(qū)域如圖:
由z=4ax+by(a>0,b>0),
得y=-$\frac{4a}$x+$\frac{z}$,
平移直線y=-$\frac{4a}$x+$\frac{z}$,由圖象可知當(dāng)直線y=-$\frac{4a}$x+$\frac{z}$經(jīng)過(guò)點(diǎn)A時(shí),直線y=-$\frac{4a}$x+$\frac{z}$的截距最大,此時(shí)最大值8,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{8x-y-4=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
代入目標(biāo)函數(shù)得4a+4b=8,即a+b=2,a2+b2的幾何意義為直線上點(diǎn)到圓的距離的平方,
則圓心到直線的距離d=$\frac{2}{\sqrt{2}}=\sqrt{2}$,
則a2+b2的最小值為d2=2;
故答案為:2.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,確定a,b的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|的值;
(2)設(shè)向量$\overrightarrow{p}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{q}$=$\overrightarrow{a}$-2$\overrightarrow$,求向量$\overrightarrow{p}$在$\overrightarrow{q}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知($\frac{1}{x}$-$\sqrt{x}$)n的展開(kāi)式中只有第四項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)等于15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題中正確的是(  )
A.若a>b,則ac2>bc2B.若a>b,則a2>b2
C.若a>b,c>d,則ac>bdD.若a>b,c<d,則a-c>b-d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.直線l的傾角為45°,且過(guò)點(diǎn)(0,-1),則直線l的方程是( 。
A.x-y+1=0B.x-y-1=0C.x+y-1=0D.x+y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=x2+bx+c在區(qū)間[0,+∞)上單調(diào)遞增的充要條件是( 。
A.b≥0B.b≤0C.b>0D.b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)集合A={-1,1},B={a},若A∪B={-1,0,1},則實(shí)數(shù)a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.A高校自主招生設(shè)置了先后三道程序,部分高校聯(lián)合考試、本校專業(yè)考試、本校面試,在每道程序中,設(shè)置三個(gè)成績(jī)等級(jí):優(yōu)、良、中,若考生在某道程序中獲得“中”,則該考生在本道程序中不通過(guò),且不能進(jìn)入下面的程序,考生只有全部通過(guò)三道程序,自主招生考試才算通過(guò),某中學(xué)學(xué)生甲參加A高校自主招生考試,已知該生在每道程序中得優(yōu)、良、中的概率分別為$\frac{1}{4}$,$\frac{1}{2}$,$\frac{1}{4}$.
(1)求學(xué)生甲能通過(guò)A高校自主招生考試的概率;
(2)求學(xué)生甲在本次自主招生中獲優(yōu)次數(shù)為0的概率;
(3)設(shè)ξ為學(xué)生甲在本次自主招生中通過(guò)的程序次數(shù),求ξ得分布列及ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為$\frac{π}{2}$,則該函數(shù)的圖象( 。
A.關(guān)于直線x=$\frac{π}{4}$對(duì)稱B.關(guān)于點(diǎn)($\frac{3π}{16}$,0)對(duì)稱
C.關(guān)于直線x=$\frac{3π}{16}$對(duì)稱D.關(guān)于點(diǎn)($\frac{π}{16}$,0)對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案