20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0),過橢圓C右頂點和上頂點的直線l與圓x2+y2=$\frac{2}{3}$相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓C的上頂點,過點M分別作直線MA,MB交橢圓C于A,B兩點,設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點.

分析 (1)橢圓C的右頂點(a,0),上頂點(0,1),設(shè)直線l的方程為:$\frac{x}{a}$+y=1,化為:x+ay-a=0,由于直線l與圓x2+y2=$\frac{2}{3}$相切,可得$\frac{|a|}{\sqrt{1+{a}^{2}}}$=$\sqrt{\frac{2}{3}}$,a>0,解得a,即可得出橢圓C的方程.
(2)對直線AB的斜率分類討論:當直線AB的斜率不存在時,利用k1+k2=2,及其斜率計算公式即可得出.當直線AB的斜率存在時,設(shè)AB的方程為y=kx+m(m≠1),A(x1,y1),B(x2,y2),直線方程與橢圓方程聯(lián)立化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系、斜率計算公式即可得出.

解答 解:(1)橢圓C的右頂點(a,0),上頂點(0,1),
設(shè)直線l的方程為:$\frac{x}{a}$+y=1,化為:x+ay-a=0,
∵直線l與圓x2+y2=$\frac{2}{3}$相切,
∴$\frac{|a|}{\sqrt{1+{a}^{2}}}$=$\sqrt{\frac{2}{3}}$,a>0,解得a=$\sqrt{2}$.
∴橢圓C的方程為$\frac{x^2}{2}+{y^2}=1$.
(2)當直線AB的斜率不存在時,
設(shè)A(x0,y0),則B(x0,-y0),
由k1+k2=2得$\frac{{{y_0}-1}}{x_0}+\frac{{-{y_0}-1}}{x_0}=2$,得x0=-1.
當直線AB的斜率存在時,
設(shè)AB的方程為y=kx+m(m≠1),A(x1,y1),B(x2,y2),$\left\{{\begin{array}{l}{\frac{x^2}{2}+{y^2}=1}\\{y=kx+m}\end{array}}\right.⇒({1+2{k^2}}){x^2}+4kmx+2{m^2}-2=0$,
得${x_1}+{x_2}=\frac{-4km}{{1+2{k^2}}},{x_1}•{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}$,
∴${k_1}+{k_2}=2⇒\frac{{{y_1}-1}}{x_1}+\frac{{{y_2}-1}}{x_2}=2⇒\frac{{({k{x_2}+m-1}){x_1}+({k{x_1}+m-1}){x_2}}}{{{x_1}{x_2}}}=2$,
即$({2-2k}){x_2}{x_1}=({m-1})({{x_2}+{x_1}})⇒({2-2k})({2{m^2}-2})=({m-1})({-4km})$,
由m≠1,(1-k)(m+1)=-km⇒k=m+1,
即y=kx+m=(m+1)x+m⇒m(x+1)=y-x,
故直線AB過定點(-1,-1).

點評 本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題、直線與圓相切的性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、斜率計算公式、點到直線的距離公式,考查了分類討論方法、推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的底面ABCD是菱形,∠DAB=60°,E是AD的中點,PA=PD.
(I)求證:平面PBE⊥平面ABCD;
(Ⅱ)若平面PBC⊥平面ABCD,PB=AB,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.計算($\frac{1}{2}$)-3+20070+(-3)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別為F1、F2,橢圓C過點P(1,$\frac{{\sqrt{2}}}{2}}$),直線PF1交y軸于Q,且$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{QO}$,O為坐標原點.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓C的上頂點,過點M分別作直線MA,MB交橢圓C于A,B兩點,設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知定義在R上的函數(shù)f(x)的圖象關(guān)于y軸對稱,且滿足f(x+2)=f(-x),若當x∈[0,1]時,f(x)=3x-1,則f(log${\;}_{\frac{1}{3}}$10)的值為$\frac{10}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知a為實數(shù),若復數(shù)z=a2-1+(a+1)i為純虛數(shù),則(a+i2015)(1+i)=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖是一個算法流程圖,則輸出的n的值是5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當x∈(0,1)時取得極大值,當x∈(1,2)時取極小值,則(b+$\frac{1}{2}$)2+(c-3)2的取值范圍是(5,25).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a{e}^{x}}{x}$+x.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線經(jīng)過點(0,1),求實數(shù)a的值.
(Ⅱ)求證:當a<0時,函數(shù)f(x)至多有一個極值點.
(Ⅲ)是否存在實數(shù)a,使得函數(shù)f(x)在定義域上的極小值大于極大值?若存在,求出a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案