【題目】如圖,在六面體中,平面平面, 平面, .且, .

(1)求證: 平面

(2)求銳二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:1)取的中點(diǎn),連接,通過平行且等于證明是平行四邊形即可證明平行且等于,再證明出是平行四邊形,然后根據(jù)線面平行判定定理即可求證;(2兩兩垂直,故可建立空間直角坐標(biāo)系求出二面角的兩個(gè)平面法向量,通過計(jì)算法向量夾角的余弦值,再根據(jù)二面角為銳角即可求出二面角的余弦值.

試題解析:(1)設(shè)的中點(diǎn)為,連接 .易證:四邊形是平行四邊形.

,且.

∵平面平面,,

,且∴四邊形是平行四邊形,

.平面, 平面,

平面.

2)由題意可得, 兩兩垂直,故可建立如圖所示的空間直角坐標(biāo)系.

.設(shè)平面的法向量為,

,令,則.

又平面的法向量.

.

由于所求的二面角為銳二面角,∴二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同時(shí)滿足兩個(gè)條件:(1)定義域內(nèi)是減函數(shù);(2)定義域內(nèi)是奇函數(shù)的函數(shù)是(
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有個(gè)形狀相同的小球,分別標(biāo)有不同的數(shù)字,現(xiàn)從袋中隨機(jī)摸出個(gè)球,并計(jì)算摸出的這個(gè)球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn).記事件為“數(shù)字之和為”.試驗(yàn)數(shù)據(jù)如下表

(1)如果試驗(yàn)繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為的頻率將穩(wěn)定在它的概率附近.試估計(jì)“出現(xiàn)數(shù)字之和為”的概率,并求的值;

(2)在(1)的條件下,設(shè)定一種游戲規(guī)則:每次摸球,若數(shù)字和為,則可獲得獎(jiǎng)金元,否則需交元.某人摸球次,設(shè)其獲利金額為隨機(jī)變量元,求的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公車私用、超編配車等現(xiàn)象一直飽受詬病,省機(jī)關(guān)事務(wù)管理局認(rèn)真貫徹落實(shí)黨中央、國務(wù)院有關(guān)公務(wù)用車配備使用管理辦法,積極推進(jìn)公務(wù)用車制度改革.某機(jī)關(guān)單位有車牌尾號(hào)為2的汽車A和尾號(hào)為6的汽車B,兩車分屬于兩個(gè)獨(dú)立業(yè)務(wù)部門.為配合用車制度對(duì)一段時(shí)間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計(jì),在非限行日,A車日出車頻率0.6,B車日出車頻率0.5,該地區(qū)汽車限行規(guī)定如下:

車尾號(hào)

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車情況相互獨(dú)立.
(1)求該單位在星期一恰好出車一臺(tái)的概率;
(2)設(shè)X表示該單位在星期一與星期二兩天的出車臺(tái)數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,則使得f(x)﹣ex﹣m≤0恒成立的m的取值范圍是(
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|0≤x≤6},B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則f不是映射的是(
A.f:x
B.f:x
C.f:x
D.f:x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求函數(shù)上的最大值;

(Ⅲ)求證:存在唯一的,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)實(shí)數(shù)m為何值時(shí),復(fù)數(shù)z= +(m2﹣2m)i為
(1)實(shí)數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB= =AC=2,E,F(xiàn)分別為A1C1 , BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE.

查看答案和解析>>

同步練習(xí)冊(cè)答案