如圖,P、Q是線段AB的三等分點,若
OA
=
a
,
OB
=
b
,則
OP
-
OQ
=(  )
A、
1
3
a
-
b
B、-
1
3
a
-
b
C、
1
3
a
+
b
D、-
1
3
a
+
b
考點:向量的減法及其幾何意義
專題:平面向量及應(yīng)用
分析:利用向量共線定理、三角形法則即可得出.
解答: 解:∵P、Q是線段AB的三等分點,
PQ
=
1
3
AB

OP
-
OQ
=
1
3
AB
=
1
3
(
OB
-
OA
)

=
1
3
(
b
-
a
)

故選:B.
點評:本題考查了向量共線定理、三角形法則,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知
cosA
cosB
=
b
a
,且C=
3

(Ⅰ)求角A,B的大。
(Ⅱ)設(shè)函數(shù)f(x)=sin(2x+A)-sin2x+cos2x,求函數(shù)f(x)的最小正周期及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
ex-1,x≤1
lnx,x>1
,則f(ln2)的值是(  )
A、0B、1
C、ln(ln2)D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
1
3
,(0<α<
π
2
),求cos(2α-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若A⊆B,求實數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<a<2,復數(shù)z=a+i(i是虛數(shù)單位),則|z|的取值范圍是(  )
A、(1,
3
)
B、(1,5)
C、(1,3)
D、(1,
5
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={(x1,x2,x3,…,x10)|xi∈{-1,0,1},i=1,2,3,…,10},則集合A中滿足條件“1≤|x1|+|x2|+|x3|+…+|x10|≤9”的元素個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-16<0},B={-5,0,1},則( 。
A、A∩B=∅
B、B⊆A
C、A∩B={0,1}
D、A⊆B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且a5=9,S12=144
(Ⅰ)求數(shù)列{an}的通項an
(Ⅱ)設(shè)bn=6×2an+2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案