如圖,在直三棱柱ABC-A1B1C1中,數(shù)學(xué)公式,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱AA1、CC1上,且AE=C1F=2.
(1)求四棱錐B-AEFC的體積;
(2)求△BEF所在半平面與△ABC所在半平面所成二面角θ的余弦值.

解:(1)因?yàn)槿庵鵄BC-A1B1C1為直三棱柱,所以A1A⊥底面ABC,所以A1A⊥AB,
又AB⊥AC,AC∩A1A=A,所以AB⊥面AA1C1C,則AB為四棱錐B-AEFC的高.
在直角梯形AEFC中,因?yàn)锳E=2,AC=2,CF=4,所以
所以VB-AEFC=
(2)以A為坐標(biāo)原點(diǎn),分別以AC,AB,AA1所在直線為x,y,z建立如圖所示的直角坐標(biāo)系,

則A(0,0,0),B(0,2,0),E(0,0,2),F(xiàn)(2,0,4),

設(shè)平面BEF的法向量為,則
,則,取z=1,得x=-1,y=1.
所以
平面ABC的一個(gè)法向量為,

所以△BEF所在半平面與△ABC所在半平面所成二面角θ的余弦值為
分析:(1)由已知條件可判出AB⊥面AA1C1C,求出直角梯形AEFC的面積,則四棱錐B-AEFC的體積可求;
(2)以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出平面ABC與平面BEF的法向量,利用平面法向量所成角的余弦值得△BEF所在半平面與△ABC所在半平面所成二面角θ的余弦值.
點(diǎn)評(píng):本題考查了椎體體積的求解方法,考查了利用空間向量求二面角的平面角,解答的關(guān)鍵是建立正確的空間坐標(biāo)系,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案